
z/VM

CMS Pipelines User’s Guide
version 6 release 1

SC24-6170-00

���

z/VM

CMS Pipelines User’s Guide
version 6 release 1

SC24-6170-00

���

Note:
Before using this information and the product it supports, read the information in “Notices” on page 285.

This edition applies to version 6, release 1, modification 0 of IBM z/VM (product number 5741-A07) and to all
subsequent releases and modifications until otherwise indicated in new editions.

This edition replaces SC24-6077-01.

© Copyright International Business Machines Corporation 1991, 2009.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures . ix

Tables . xv

About This Document . xvii
Intended Audience . xvii
Where to Find More Information xvii

How to Send Your Comments to IBM xix
If You Have a Technical Problem xix

Chapter 1. Pipeline Basics . 1
The Significant Difference . 1
What Is a Pipeline?. 1
Stages . 2
The PIPE Command . 4
Device Drivers . 6
Filters. 7
Specifying PIPE Options . 8
Understanding Pipelines . 8
Pipelines in Execs . 8

Preserving a Pipeline . 9
Continuing Pipelines on Several Exec Lines. 9
Using Pipelines As Part of an Exec 10
Return Codes . 11
User-Written Stages . 11

Reading Interactive Dialogs . 12
How to Read Syntax Diagrams 12

Message and Response Notation 14
Pipeline Help . 15

Using the Online HELP Facility 15
Using the HELP Stage . 15
Using the AHELP Stage . 16

Migration Information. 16
Reference Book . 16

Chapter 2. Filters. 17
Selecting Records by Content 17

Looking Everywhere in the Record (LOCATE, NLOCATE) 17
Looking at the Beginning of a Record (FIND, NFIND, TOLABEL, FRLABEL) 21
Looking at the End of a Record 23
Discarding Duplicate Records (UNIQUE) 23
Discarding Unique Records (UNIQUE MULTIPLE) 24

Selecting Records by Position (TAKE, DROP) 25
Changing Records . 27

Translating Characters (XLATE). 27
Splitting and Joining (SPLIT, JOIN) 30
Padding and Chopping (PAD, CHOP) 32
Removing Leading or Trailing Characters (STRIP) 33
Changing and Rearranging Contents (CHANGE, SPECS) 34

Miscellaneous Filters. 48
Duplicating Records (DUPLICATE) 48
Counting Characters, Words, and Records (COUNT) 48

© Copyright IBM Corp. 1991, 2009 iii

Sorting Records (SORT) . 49
Buffering Records (BUFFER). 52

Chapter 3. Host Command Interfaces 53
Working with CMS and CP Commands 53

CMS Stage . 53
COMMAND Stage. 54
CP Stage . 54
Putting VM Command Results in REXX Variables 54
Executing Pipeline Records as Commands 55

Using Subcommand Environments (SUBCOM) 55
Connecting with CP System Services 56

STARMONITOR Stage . 56

Chapter 4. Device Drivers . 59
Working with the Terminal (CONSOLE) 59
Writing Literal Strings to a Pipeline (LITERAL) 60
Working with CMS Files . 61

The < Stage . 62
The > Stage . 62
The >> Stage . 63
The FILEFAST Stage . 63
Getting Facts about Files (STATE, STATEW) 64
Packing and Unpacking Files. 65

Accessing Exec Variables . 65
STEM Stage . 65
VAR Stage . 68

Working from XEDIT . 69
Issuing XEDIT Messages (XMSG) 69
Accessing XEDIT Files (XEDIT). 70

Combining Records from Device Drivers 71
APPEND Stage . 71
PREFACE Stage . 72

Chapter 5. Writing Stages . 75
Stage Concepts . 75

REXX Stages . 75
Assembler Stages. 75
Interaction with CMS Pipelines 76
Pipeline Subcommands. 76
Pipeline Assembler Macros 76
Entry Conditions to an Assembler Stage 77
Return Code on Exit . 78

The CMS Pipelines Environment 78
How a Pipeline Runs. 78
How a Pipeline Ends. 81

An Example Stage—HOLD REXX 83
Writing Stages in Assembler . 84

Setting up the DSECT . 84
Using the PIPDESC Macro 85
Using the PIPEPVR Macro 85

An Example Assembler Stage—COPYCAT 85
Using Your REXX Stage . 87
Using Your Assembler Stage . 87
Pipeline Subcommands. 88

READTO Subcommand. 88

iv z/VM: CMS Pipelines User’s Guide

OUTPUT Subcommand. 88
PEEKTO Subcommand. 88
SHORT Subcommand . 89
STAGENUM Subcommand 90

Processing Arguments . 92
Executing CP and CMS Commands 92
Another Example Stage—TITLE REXX 93
Using CALLPIPE to Write Subroutine Pipelines 94

Storing Sequences of Stages 96
Other Formats of Connectors 96
Using Connectors with CALLPIPE 97
Using CALLPIPE with Other Pipeline Subcommands 99
Additional CALLPIPE Examples 102

Testing Stages . 104
Tracing Stages . 105
Improving Performance . 105

Chapter 6. Multistream Pipelines 107
How Stages Use Multiple Streams 107
Writing Multiple Pipelines. 109
Connecting Streams . 110

Connecting to a Secondary Output Stream 111
Connecting to a Secondary Input Stream 112
Connecting to Both the Secondary Input and the Secondary Output 113

Using Several Secondary Streams 114
Stages for Multistream Pipelines 115

FANOUT Stage . 115
FANINANY Stage . 117
Identifying Streams . 118
FANIN Stage . 120
OVERLAY Stage . 121
SPECS, Revisited . 122
COUNT, Revisited . 124
MERGE Stage . 126
LOOKUP Stage . 127

Pipeline Stalls . 131
Maintaining the Relative Order of Records 134

How Each Stage of a Pipeline Runs 134
How Stages Delay the Records 134
How to Predict Relative Record Order 135

Pipeline Subcommands for Multistream Pipelines 141
SELECT Pipeline Subcommand 141
MAXSTREAM Pipeline Subcommand 142
STREAMNUM Pipeline Subcommand 144
CALLPIPE, Revisited . 144
ADDPIPE Pipeline Subcommand. 145
SEVER Pipeline Subcommand 153

Chapter 7. Event-Driven Pipelines 155
Stages for Event-Driven Pipelines 155

DELAY Stage . 155
IMMCMD Stage . 160
STARMSG Stage . 162

Example File Server . 164
Example Requester. 164
Example Server . 164

Contents v

Running the File Server . 172

Chapter 8. Using Unit Record Devices 173
Writing to the Virtual Punch (PUNCH, URO). 173
Writing to the Printer (PRINTMC, URO) 174
Reading Spool Files (READER) 176

Virtual Reader Characteristics 177
Reading Printer Files . 178
Reading Punch Files . 178

Chapter 9. Blocking and Deblocking. 181
Fixed Format . 182
CMS Variable Format . 183
MVS Variable Format . 184
Line-End Character Format . 185
NETDATA Format . 187
IEBCOPY Unloaded Data Set Format 188
Packed Format (PACK, UNPACK) 189
Creating Fixed-Format Records with FBLOCK 190

Chapter 10. Using SQL in CMS Pipelines 193
SQLSELEC - An Example Program to Format a Query. 193
Creating, Loading, and Querying a Table 194
Using SPECS to Convert Fields 196
About Units of Work . 197
Using Multiple Streams with SQL. 197
Using Concurrent SQL Stages 198
Getting HELP for DB2 Server for VM 198

Chapter 11. Using TCP/IP with CMS Pipelines 199
Introduction. 199

Creating a Network Client 201
Creating a Network Server 207
A Way to Stop One Client/Server Conversation 215
A Server that Handles Multiple Clients 218
Other TCP/IP Related Stages 223

Chapter 12. Filter Packages 225
Filter Package Names . 225
Search Order . 226
Building a Filter Package. 226
Replaced Filter Package Execs 228

Chapter 13. Debugging Pipelines 229
Tracing Pipelines. 229

Tracing to a File . 231
Tracing Individual Stages. 235
Controlling Trace Messages. 236

Taking Snapshots of Data . 236
Naming Pipelines (NAME Option) 237
Displaying Pipeline Messages 237
Displaying All Nonzero Return Codes (LISTERR Option) 238

Appendix A. Additional Examples. 239
Listing Frequently-Used Execs. 239
Listing Accessed File Modes 239

vi z/VM: CMS Pipelines User’s Guide

Counting Reader Files. 240
Displaying Block Comments 240
Adding Sequence Numbers to a File 241
Copying between XEDIT Files 242
Reversing the Order of Records 243
Isolating Words . 244
Listing Files on Accessed File Modes 245
Ignoring Case on FIND . 246
Writing the First Lines of Files 247
Creating a Word List from XEDIT. 248
Executing a Filter against XEDIT Lines 248
Counting Files. 251
Trapping the Responses to RSCS Commands 252
Processing Reader Files . 252
Marking Selected Lines . 254
Creating Two-Column Output 255
Putting First Last and Last First 256
Tagging and Spooling . 257
Create a Print File from a Reader File 257
Punching Files . 257

Appendix B. CMS Pipelines Summary 259

Appendix C. Migrating to CMS Pipelines 267
Terminology Differences . 267
Writing Stages . 268
Differences in DB2 Server for VM Support 268
Differences in the QUERY Stage 268
Changed Filter Package Execs 268
Changed Commands . 269
Changed Sample Programs. 270
Changed Messages and Return Codes 270
Operating Environments Supported by z/VM CMS Pipelines 270

Appendix D. ECHONET C Source Code 271

Notices . 285
Programming Interface Information 287
Trademarks. 287

Glossary . 289

Bibliography . 291
Where to Get z/VM Information 291
z/VM Base Library . 291

Overview . 291
Installation, Migration, and Service 291
Planning and Administration. 291
Customization and Tuning 291
Operation and Use . 291
Application Programming. 291
Diagnosis . 292

z/VM Facilities and Features 292
Data Facility Storage Management Subsystem for VM 292
Directory Maintenance Facility for z/VM 292
Open Systems Adapter/Support Facility 292

Contents vii

Performance Toolkit for VM 293
RACF Security Server for z/VM 293
Remote Spooling Communications Subsystem Networking for z/VM 293

Prerequisite Products . 293
Device Support Facilities . 293
Environmental Record Editing and Printing Program. 293

Additional Publications . 293

Index . 295

viii z/VM: CMS Pipelines User’s Guide

Figures

1. Data Flowing through a Pipeline. 2
2. Stages within a Pipeline. 2
3. Records Flowing through a Stage . 3
4. Records Flowing through a CHOP Stage . 3
5. Records Flowing through a COUNT Stage . 3
6. Records Flowing through a LOCATE Stage . 4
7. Records Flowing through Multiple Stages . 4
8. Finding the Stage Separator . 5
9. Map of Your First Pipeline . 5

10. Map of a Pipeline with Two Device Drivers . 6
11. Specifying an Option on the PIPE Command . 8
12. LOCATE Stage Example: Locating Records Containing the String 18
13. LOCATE Stage Example: Not Locating Records Containing the String 18
14. LOCATE Stage Example: Using Delimiters . 19
15. LOCATE Stage Example: Using an Input Range 19
16. LOCATE Stage Example: Locating Multiple Strings 19
17. LOCATE Stage Example: Specifying Data Length. 20
18. LOCATE Stage Example: Removing Blank Lines from File 20
19. NLOCATE Stage Example: Locating Records . 21
20. NLOCATE Stage Example: Specifying Data Length 21
21. FIND Stage Example: Finding Records Containing the String 21
22. FIND Stage Example: Using Arbitrary Characters in the String 22
23. FIND Stage Example: Specifying a Blank in the String 22
24. FIND and NFIND Stages Examples . 22
25. FRLABEL and TOLABEL Stages Examples . 23
26. FRLABEL and TOLABEL Stages Example . 23
27. UNIQUE Stage Example . 24
28. UNIQUE MULTIPLE Stage Example (DUPLF EXEC Contents) 25
29. UNIQUE MULTIPLE Stage Example (DUPLF EXEC Results) 25
30. TAKE Stage Example . 26
31. TAKE LAST Stage Example . 26
32. DROP Stage Example . 26
33. DROP LAST Stage Example . 27
34. TAKE and DROP Stage Example . 27
35. XLATE Stage Example: Translating a String to Uppercase 27
36. XLATE Stage Example: Translating a String to Lowercase 28
37. XLATE Stage Example: Using a Column Range 28
38. XLATE Stage Example: Translating Individual Characters 28
39. XLATE Stage Example: Translating Multiple Characters 28
40. XLATE Stage Example: Specifying a Range . 29
41. XLATE Stage Example: Specifying Hexadecimal Values 29
42. XLATE Stage Example: Using Ranges of Characters 29
43. XLATE Stage Example: Using Ranges for Input and Output 29
44. XLATE Stage Example: Overriding a Character Range 30
45. SPLIT Stage Example . 30
46. JOIN Stage Example: Joining Pairs of Records. 30
47. JOIN Stage Example: Putting a Space between Joined Records 31
48. JOIN Stage Example: Putting Strings between Joined Records 31
49. JOIN Stage Example: Using String Delimiters . 31
50. JOIN Stage Example: Joining More than Two Input Records 31
51. JOIN Stage Example: Joining All Pipeline Records 32
52. CHOP Stage Example . 32
53. PAD Stage Example . 32

© Copyright IBM Corp. 1991, 2009 ix

54. PAD Stage Example: Padding on the Left. 32
55. PAD and CHOP Stages Example . 33
56. STRIP Stage Example . 33
57. STRIP Stage Example: Stripping Leading or Trailing Characters 33
58. STRIP Stage Example: Stripping Nonblank Characters 34
59. CHANGE Stage Example: Using Column Ranges. 35
60. CHANGE Stage Example: Using Several Column Ranges 35
61. SPECS Stage Example: Using Numbers to Identify Input 36
62. SPECS Stage Example: Using More than One Group of Numbers 37
63. SPECS Stage Example: Using Various Column Ranges 37
64. SPECS Stage Example: Specifying the End of the Record 37
65. SPECS Stage Example: Using the WORDS Operand 38
66. SPECS Stage Example: Specifying Word Ranges 38
67. SPECS Stage Example: Using the FIELDS Operand 39
68. SPECS Stage Example: Specifying Field Ranges 39
69. SPECS Stage Example: Specifying A Literal String 40
70. SPECS Stage Example: Not Using Data from the Input Records 40
71. SPECS Stage Example: Using a Hexadecimal Literal 41
72. SPECS Stage Example: Using the RECNO Operand 41
73. SPECS Stage Example: Using Column Numbers for Output 41
74. SPECS Stage Example: Overlaying Data . 42
75. SPECS Stage Example: Using the NEXT Operand 42
76. SPECS Stage Example: Using the NEXTWORD Operand. 42
77. SPECS Stage Example: Aligning Data . 43
78. SPECS Stage Example: Aligning Data to the Right 43
79. SPECS Stage Example: Aligning Data to the Left 43
80. SPECS Stage Example: Converting Data . 44
81. SPECS Stage Example: Additional Conversions 44
82. SPECS Stage Example: Using the READ Operand 45
83. SPECS Stage Example: Using the WRITE Operand 45
84. SPECS Stage Example 1: Using Negative Relative Column Numbers 46
85. SPECS Stage Example 2: Using Negative Relative Column Numbers 47
86. SPECS Stage Example 3: Using Negative Relative Column Numbers 47
87. SPECS Stage Example: Specifying Range Beyond the Input Record. 47
88. SPECS Stage Example: Looking at the End of a Record 47
89. DUPLICATE Stage Example . 48
90. COUNT Stage Examples . 48
91. COUNT Stage Example: Counting Words . 49
92. COUNT Stage Example: Counting Several Items 49
93. The Order of COUNT Results . 49
94. SORT Stage Example . 50
95. SORT DESCENDING Stage Example . 50
96. SORT Stage Example: Using a Column Range. 50
97. SORT DESCENDING Stage Example: Using a Column Range 51
98. SORT UNIQUE Stage Example . 51
99. SORT COUNT Stage Example: Counting and Discarding Duplicates 51

100. BUFFER Stage Example: Stacking Terminal Input Lines 52
101. STEMMED ARRAY: Placing Host Command Responses in 55
102. Executing Multiple Commands . 55
103. STATE XEDIT: Writing Information about a File . 56
104. CONSOLE Stage Example 1 . 59
105. CONSOLE Stage Example 2 . 59
106. CONSOLE Stage Example: Typing to a File . 60
107. LITERAL Stage Example 1 . 60
108. CMS, LITERAL, and CONSOLE Stages Example 60
109. LITERAL Stage Example 2 . 61

x z/VM: CMS Pipelines User’s Guide

110. < Stage Example. 62
111. > Stage Example. 63
112. FILEFAST Stage Example . 64
113. STATE Stage Example. 65
114. STATE and VAR Stages Example . 65
115. STEMFRST EXEC: Using STEM Stage to Read REXX Variables 66
116. STEMMID EXEC: Using STEM Stage to Write REXX Variables. 66
117. STEM Stage Example: Using REXX with CMS Pipelines 67
118. COUNTFIL EXEC: Using STEM Stage . 67
119. FINDFM EXEC: Using STEM Stage . 68
120. DISKSPAC EXEC: Using VAR Stage . 69
121. TRAILER XEDIT: Putting a Trailer Record in a New File 71
122. SNIP XEDIT: Appending Text to Another File. 71
123. APPEND Stage Example . 72
124. Appending Two Files . 72
125. PREFACE Stage Example . 73
126. REVIT REXX: A Simple User-Written Stage . 79
127. Pipeline Execution Example . 80
128. A Pipeline Ending with a Zero Return Code . 81
129. A Pipeline Ending with a Nonzero Return Code 82
130. HOLD REXX: A Simple REXX User-Written Stage 84
131. COPYCAT: A Simple Assembler User-Written Stage 86
132. Modified HOLD REXX: Using SHORT Pipeline Subcommand 89
133. AUTHOR REXX: Using SHORT Pipeline Subcommand to Process a Header. 90
134. ADD REXX: Using STAGENUM Pipeline Subcommand. 91
135. AUTHOR REXX: Processing Arguments . 92
136. MINUS7 REXX: Sending a Command to the Wrong Environment 92
137. TITLE REXX: A User-Written Stage Example . 93
138. FIXED REXX: Using READTO and OUTPUT Pipeline Subcommands 94
139. FIXED REXX: Using CALLPIPE Pipeline Subcommand 94
140. Map of Original Pipeline . 95
141. Map of Pipeline When CALLPIPE Is Running . 95
142. COUNTWDS REXX: Subroutine Pipeline Example 96
143. LOGIT REXX: Subroutine without an Output Connector 97
144. Map of Pipeline Using Only an Input Connector 97
145. SEELOG REXX: Subroutine without an Input Connector 98
146. Map of Pipeline Using Only an Output Connector 98
147. Map of Pipeline with Unconnected Streams . 99
148. SEELOG REXX: Using CALLPIPE, READTO, and OUTPUT Pipeline Subcommands. 99
149. SEELOG REXX: Another Variation . 100
150. COMBO REXX: Using READTO, OUTPUT, and CALLPIPE Pipeline Subcommands 102
151. FILEDATE REXX: Using CALLPIPE Pipeline Subcommand. 103
152. TRACING REXX: Using CALLPIPE Pipeline Subcommand 103
153. Stage with One Input and One Output Stream 107
154. Stage with Two Input and Output Streams . 107
155. LOCATE with a Secondary Stream. 108
156. FANOUT with Multiple Output Streams . 108
157. Processing Secondary Outputs . 108
158. Maps of Two Independent Pipelines . 109
159. Two Pipelines Separated by an End Character 109
160. Defining and Referencing Labels . 110
161. Generic Map for Connecting to Secondary Outputs 111
162. Map Showing Secondary Output. 112
163. Generic Map for Connecting to Secondary Inputs 113
164. Generic Map for Connecting to Secondary Inputs and Secondary Outputs 113
165. Using Several Secondary Streams . 114

Figures xi

166. Three Pipelines in One PIPE Command . 115
167. Map of FANOUT Example . 116
168. FANOUT Example . 116
169. Map of FANOUT Example Using a Tertiary Stream 117
170. FANOUT Example Using a Tertiary Stream . 117
171. Map of FANINANY Example . 118
172. LFD EXEC: A FANINANY Example . 118
173. Map of Pipeline Showing Stream Numbers . 119
174. Map of FANIN Example . 120
175. FANIN Example Showing Default Stream Order 120
176. FANIN Example Showing Stream Numbers. 121
177. FANIN Example Showing Stream Identifiers . 121
178. Map of Overlay Example . 122
179. Example of OVERLAY Stage: OVERLAY EXEC 122
180. Map of SPECS SELECT Example . 123
181. Example of SPECS SELECT Operand: SELECT EXEC 123
182. WORDUSE EXEC: Example Exec to Analyze Word Use 125
183. Counting Several Items . 126
184. Map of MERGE Example . 127
185. MERGE Stage Example: LISTMRG EXEC . 127
186. Map of LOOKUP Stage . 128
187. LOOKUP Stage Example: LOOKSTR EXEC . 129
188. Map of VALIDATE REXX . 130
189. VALIDATE REXX: Example of LOOKUP . 130
190. Example Stall Involving a Stage that Needs Records in Order 131
191. Fixing a Stall with a BUFFER Stage . 132
192. Example Stall Involving a Stage that Needs Multiple Records 132
193. Fixing a Stall with HOLD REXX . 133
194. Example Stall Involving a LOCATE Stage . 133
195. Map of NODELAY EXEC . 135
196. Map of CANDELAY EXEC . 138
197. Map of DELAY EXEC. 139
198. Example of the SELECT Pipeline Subcommand: MYFANOUT REXX 142
199. Example of the MAXSTREAM Pipeline Subcommand: MYFANOUT REXX 143
200. Example of Multistream Subroutine Pipeline: LOCDEPT REXX 144
201. The Original Pipeline . 146
202. ADDPIPE Map: B | C. 146
203. ADDPIPE Example: BACKUP REXX . 147
204. ADDPIPE Map: B | C | *.INPUT: . 148
205. ADDPIPE Example: SECPARM REXX . 148
206. ADDPIPE Map: *.OUTPUT: | B | C . 149
207. ADDPIPE Example: TRACER REXX . 150
208. ADDPIPE Map: *.INPUT: | B | C . 150
209. ADDPIPE Map: B | C | *.OUTPUT: . 151
210. ADDPIPE Map: *.INPUT: | B | C | *.INPUT: . 151
211. ADDPIPE Map: *.OUTPUT: | B | C | *.OUTPUT: 152
212. ADDPIPE Map: *.INPUT: | B | C | *.OUTPUT: . 152
213. ADDPIPE Map: *.OUTPUT: | B | C | *.INPUT: . 153
214. LATER EXEC: A DELAY Example . 156
215. LATER2 EXEC: A DELAY Example. 157
216. EVERY REXX: Example Subroutine Pipeline for Delaying Commands 158
217. DOIT EXEC: Example Exec for Delaying Commands 159
218. IMMCMD Stage Example . 160
219. IMMCMD Stage Example: RPTMSG EXEC . 161
220. Example Subroutine to Enter Asynchronous Commands: ASYNCMS REXX 161
221. Example Use of ASYNCMS REXX . 162

xii z/VM: CMS Pipelines User’s Guide

222. Format of STARMSG Output Records . 163
223. FGET EXEC: Example Requester . 164
224. Example File Server: MYSERV EXEC . 166
225. Example Filter to Create Generic Records: GENERIC REXX 167
226. Example Filter for $FGET$: FGETMSG REXX 168
227. Example Request Processor: REQUEST REXX 169
228. Verify Authorization: CHKAUTH REXX . 170
229. CHKFILE REXX: Verify the Existence of a File 171
230. Example of the PUNCH Stage . 174
231. Punching a File with URO . 174
232. Printing a File with PRINTMC. 175
233. Printing a File with URO. 175
234. Printing a File without Carriage Control . 176
235. Reading a Printer File . 178
236. Reading a Plain Punch File . 179
237. A Filter for Reading Plain Punch Files: PLAIN REXX 179
238. Reading a File Created by CMS PUNCH . 180
239. 80-Byte Records in a 240-Byte Block . 182
240. Blocking Records in Fixed Format . 183
241. Deblocking Fixed-Format Blocks. 183
242. Blocking Records in CMS Variable Format . 184
243. Blocking Data with Line-End Characters . 186
244. Spanning Blocks with Line-End Characters . 186
245. Deblocking Data with Line-End Characters . 187
246. Deblocking NETDATA-Format Files . 188
247. Packing Fixed-Length Records . 189
248. Packing Variable-Length Records . 189
249. Unpacking Records . 190
250. Creating Fixed-Length Records with FBLOCK. 191
251. 80-Byte Records in a 200-Byte Block . 191
252. Creating Spanned Records with FBLOCK . 192
253. Deblocking Spanned Records with FBLOCK . 192
254. SQLSELEC Examples . 193
255. Creating an DB2 Server for VM Table. 194
256. Inserting Rows in an SQL Table . 194
257. Describing a Query . 194
258. Querying a Table . 195
259. Suppressing Indicator Words . 195
260. Formatting the Field Length . 195
261. Running SQLFORM EXEC. 196
262. Another SQLSELEC Example . 196
263. Converting to Packed Decimal . 197
264. Using the HELP Stage to Get DB2 Server for VM Help 198
265. Running SQLINIT . 198
266. VM Host as a Client . 200
267. VM Host as a Server . 201
268. ECHOC REXX User-written Stage on the Client 203
269. Enhanced ECHOC REXX User-written Stage on the Client 206
270. Further Enhanced ECHOC REXX User-written Stage on the Client 207
271. Data Flow for the Server . 209
272. ECHOS EXEC . 210
273. ECHOD REXX . 211
274. Complete Data Flow for the Server. 213
275. HEXTYPE REXX . 214
276. Data Flow for the Server to End a Conversation 216
277. ECHOD REXX to End a Conversation . 218

Figures xiii

278. Data Flow for the Server to Handle Multiple Clients. 219
279. ECHOSND EXEC . 220
280. TCPDEAL REXX . 221
281. TCPDEALT REXX . 222
282. Example of Trace Output . 230
283. Numbering Stages of a Pipeline When CALLPIPE Is Running 231
284. Directing Trace Output to a Data Set (RUNPIPE with PIPE TRACE Option) 231
285. Directing Trace Output to a Data Set (Using RUNPIPE TRACE) 232
286. Console Output from Directing Trace Output to a Data Set 232
287. Highlighted Console Output from Directing Trace Output to a Data Set 233
288. Console Output of Trace with Correct Pipeline Expression Set 234
289. Tracing Individual Stages (TRACE Option) . 235
290. Using NOMSGLEVEL to Suppress Messages . 236
291. Taking Snapshots . 236
292. Finding Frequently-Used Execs: POPEXECS EXEC 239
293. Listing Accessed File Modes: TYACC EXEC . 239
294. Counting Reader Files: NETRDRF EXEC . 240
295. Displaying Block Comments: DISPBLKC EXEC 241
296. Adding Sequence Numbers: CRTSCR EXEC . 242
297. Copying between XEDIT Files: IFCOPY XEDIT 243
298. Reversing the Order of Records: REVLINES REXX 244
299. Isolating Words: ISOWORD REXX . 244
300. Listing Files on Accessed File Modes: LFD REXX 245
301. Listing Accessed File Modes: ACCESSED REXX 246
302. Ignoring Case on FIND: FINDU REXX . 246
303. Writing the First Line of Files: LINE1 REXX . 247
304. WORDLIST XEDIT . 248
305. XSTG XEDIT. 250
306. Example Exec for SORT COUNT: NUMTYPE EXEC 251
307. Example Stage to Trap RSCS Responses: QRSCS REXX 252
308. Example Using Reader Files: RDR REXX . 253
309. Running RDR REXX . 254
310. Marking Selected Lines: MARKLINE REXX. 254
311. Creating Two-Column Output: TWO-UP REXX 255
312. Writing the First Record Last: FIRLAST REXX 256
313. Writing the Last Record First: LASTFIR REXX 256
314. Tagging and Spooling the Punch: TAGNSPL REXX. 257
315. Creating a Print File from a Reader File: REPRINT EXEC 257
316. Punching Files: PUNFILES EXEC . 258
317. Building Punch File Headers: PUNFILES REXX 258
318. ECHONET C Source Code for the ECHO Server 271

xiv z/VM: CMS Pipelines User’s Guide

Tables

1. Disposition of Reader Files Depending upon HOLD/KEEP Settings 177
2. Formatting SQL Data . 196
3. What Each Stage Does . 259
4. What Each Pipeline Subcommand Does. 264
5. What Each Assembler Macro Does . 265
6. Name Changes . 269

© Copyright IBM Corp. 1991, 2009 xv

xvi z/VM: CMS Pipelines User’s Guide

About This Document

This document describes how to use IBM® z/VM® CMS Pipelines. CMS Pipelines
provides a rich and efficient set of functions that can be used to solve complex
problems without requiring a program, and it lets you write REXX execs without
device interface dependencies.

Intended Audience
This document is for anyone who wants to learn how to use CMS Pipelines and has
not used CMS Pipelines before or has had some experience with CMS Pipelines
and wants to gain more knowledge.

Before using this document, you should be familiar with CMS. You should know
how to enter CMS commands. It is also helpful, though not necessary, to know how
to write simple REXX execs. You do not need to have system programming
experience.

Where to Find More Information
For more information about z/VM, see the “Bibliography” on page 291 for a list of
related publications.

Links to Other Online Documents
If you are viewing the Adobe® Portable Document Format (PDF) version of this
document, it might contain links to other documents. A link to another
document is based on the name of the requested PDF file. The name of the
PDF file for an IBM document is unique and identifies the edition. The links
provided in this document are for the editions (PDF names) that were current
when the PDF file for this document was generated. However, newer editions
of some documents (with different PDF names) might exist. A link from this
document to another document works only when both documents reside in the
same directory.

© Copyright IBM Corp. 1991, 2009 xvii

xviii z/VM: CMS Pipelines User’s Guide

How to Send Your Comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or give us any other feedback that
you might have.

Use one of the following methods to send us your comments:

1. Send an e-mail to mhvrcfs@us.ibm.com

2. Visit the z/VM reader's comments Web page at www.ibm.com/systems/z/os/zvm/
zvmforms/webqs.html

3. Mail the comments to the following address:
IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Mail Station P181
2455 South Road
Poughkeepsie, NY 12601-5400
U.S.A.

4. Fax the comments to us as follows:
From the United States and Canada: 1+845+432-9405
From all other countries: Your international access code +1+845+432-9405

Include the following information:
v Your name and address
v Your e-mail address
v Your telephone or fax number
v The publication title and order number:

z/VM V6R1 CMS Pipelines User’s Guide
SC24-6170-00

v The topic and page number related to your comment
v The text of your comment

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

IBM or any other organizations will only use the personal information that you
supply to contact you about the issues that you submit to IBM.

If You Have a Technical Problem
Do not use the feedback methods listed above. Instead, do one of the following:

v Contact your IBM service representative.

v Contact IBM technical support.

v Visit the z/VM support Web page at www.vm.ibm.com/service/

v Visit the IBM mainframes support Web page at www.ibm.com/systems/support/z/

© Copyright IBM Corp. 1991, 2009 xix

http://www.ibm.com/systems/z/os/zvm/zvmforms/webqs.html
http://www.ibm.com/systems/z/os/zvm/zvmforms/webqs.html
http://www.vm.ibm.com/service/
http://www.ibm.com/systems/support/z/

xx z/VM: CMS Pipelines User’s Guide

Chapter 1. Pipeline Basics

CMS Pipelines lets you solve big problems by combining small programs. It lets you
do work that would otherwise require someone to write a new program. Often you
get the result you need with a single CMS command. That command is PIPE.

The PIPE command accepts stages as operands. Many stages are included with
CMS Pipelines. Some stages read data from system sources, such as disk files,
tape files, and the results of z/VM® commands. Other stages filter and refine that
data in some way. You can combine many stages within a single PIPE command to
create the results you need.

Here is an example of a simple PIPE command. It counts the number of words in
your ALL NOTEBOOK file and writes the result to your terminal. A word is anything
surrounded by blanks:
pipe < all notebook | count words | console

Three stages are combined to do the work. The < (read file) stage reads the file,
the COUNT stage counts the words, and the CONSOLE stage displays the count at
your terminal.

Anyone familiar with CMS commands can use CMS Pipelines. You do not need to
be a programmer. If you can describe what you want to do, chances are that you
can use CMS Pipelines to do it. This book describes how to use CMS Pipelines.
Read this chapter to learn pipeline concepts and to see what pipelines can do.
Then use the rest of the book as you need it. The chapters can be read in any
order.

If you are a programmer, CMS Pipelines can save you some coding. Pipelines can
be used in execs to replace device-dependent code (such as EXECIO). Often,
several lines of code can be replaced with a single PIPE command. You might also
consider writing your own stages. These user-written stages are programs that read
from and write to a pipeline. User-written stages are device-independent and can be
easily used by others.

The Significant Difference
Two important characteristics of CMS Pipelines distinguish it from other z/VM
facilities:

v CMS Pipelines lets you combine programs so that the output of one program
serves as the input to the next.

v CMS Pipelines includes many programs, referred to as built-in stages, that are
ready for you to combine in pipelines.

What Is a Pipeline?
CMS pipelines are like the pipelines used in plumbing. Instead of water flowing
through pipes, however, data flows through programs. Data enters the pipe from a
device (such as a terminal or a disk), flows through the pipeline, and exits to
another device. (See Figure 1 on page 2.)

© Copyright IBM Corp. 1991, 2009 1

Programs, like pieces of pipe, can be fit together to solve complex problems. Each
program, or stage, in the pipeline changes the data that flows through it. As data
flows through the stages it is transformed, step-by-step, into the results you need.
The data flows from left to right. (See Figure 2.)

CMS Pipelines includes many stages that you can use in your pipelines. Some
stages move data into and out of the pipeline. Others filter or transform data within
it. These stages may be sufficient for creating pipelines that meet your needs. If not,
you can write your own stages.

User-written stages are REXX or Assembler programs that read data from the
pipeline, work on the data, and place the data back in the pipeline. You can use
user-written stages and built-in stages in the same pipeline. Because data is read
from and written to the pipeline, stages are independent. Writing a stage is like
creating a new water valve—because the pipe fittings are standard, others can use
the valve in their plumbing.

Stages
In a pipeline, the output of one stage is the input to the next. The data itself is in
the form of discrete records; that is, it is records that flow through the pipeline, not a
continuous stream of bytes. A record is simply a string of characters—perhaps a
line of a CMS file or a line entered at the terminal. Imagine a stage as a small
factory through which a conveyor moves records. Records enter the stage on the
left, and leave on the right. Figure 3 on page 3 shows input records before

Pipeline
┌─────────────────────────────────┐

data │ data │ data
┌─────�│ ──────────────────────� ├──────┐
│ │ │ │
│ └─────────────────────────────────┘ 	

┌────┴────┐ ┌─────────┐
│ │ │ │
│ Disk │ │ Terminal│
│ File │ │ │
│ │ │ │
│ │ │ │
└─────────┘ └─────────┘

Figure 1. Data Flowing through a Pipeline

Pipeline
┌──────────┬──────────┬───────────┐

data │ Stage 1 │ Stage 2 │ Stage 3 │ data
┌─────�│ ────� ────� ├──────┐
│ │ │ │ │ │
│ └──────────┴──────────┴───────────┘ 	

┌────┴────┐ ┌─────────┐
│ │ │ │
│ Disk │ │ Terminal│
│ File │ │ │
│ │ │ │
│ │ │ │
└─────────┘ └─────────┘

Figure 2. Stages within a Pipeline

Pipeline Basics

2 z/VM: CMS Pipelines User’s Guide

processing on the left. The stage reads the records and processes them. The
resultant output records, written by the stage, are shown on the right.

While within the stage, the records can be modified, discarded, or split apart.
Practically anything can happen to them. Precisely what happens depends on the
stage that is being used. Many stages write one output record for each input record.
Some, however, do not.

Figure 4 shows a stage consisting of a CHOP stage. CHOP truncates records at a
specified length. In the example, each record is truncated to a length of 5
characters. Like many stages, CHOP writes one output record for every input
record.

Figure 5 shows a stage consisting of a COUNT WORDS stage. Two records flow
into the stage, but only one flows out. That single record contains the count of the
number of words on all the records flowing into the stage.

Figure 6 on page 4 shows another example. In this case the stage is LOCATE
/BOB/. Again, two records flow into the stage. LOCATE looks at the content of each
incoming record. If it contains the string BOB, LOCATE lets the record through.

┌──────────────┐
┌────────────────┐ │ Stage │ ┌─────────────────┐
│ Input Record 1 │ │ │ │ Output Record 1 │
│ Input Record 2 │ ────�│ ├───� │ Output Record 2 │
│ Input Record 3 │ │ │ │ Output Record 3 │
└────────────────┘ │ │ └─────────────────┘

└──────────────┘

Figure 3. Records Flowing through a Stage

Input records ┌──────────────┐ Output record
┌───────────┐ │ CHOP 5 │ ┌───────────┐
│ BOB SMITH │ │ Stage │ │ BOB S │
│ SUE JONES │ ────�│ ├───� │ SUE J │
└───────────┘ │ │ └───────────┘

│ │
└──────────────┘

Figure 4. Records Flowing through a CHOP Stage

Input records ┌──────────────┐ Output records
┌───────────┐ │ COUNT WORDS │ ┌───────────┐
│ BOB SMITH │ │ Stage │ │ 4 │
│ SUE JONES │ ────�│ ├───� └───────────┘
└───────────┘ │ │

│ │
└──────────────┘

Figure 5. Records Flowing through a COUNT Stage

Pipeline Basics

Chapter 1. Pipeline Basics 3

The records entering a stage are called its input stream. The records leaving a
stage are called its output stream. In the example in Figure 6, LOCATE reads all
records from its input stream, but writes only the records containing BOB to its output
stream.

Stages can use more than one input stream or output stream. You can use these
secondary streams to write complex multistream pipelines. Multistream pipelines are
described in Chapter 6, “Multistream Pipelines,” on page 107. Until that chapter,
let’s work with simpler pipelines that use only one input stream and one output
stream.

Figure 7 shows how records flow through several stages. The output of the
LOCATE stage becomes the input to the COUNT stage.

The LOCATE stage reads both records from its input stream (SUE JONES and BOB
SMITH). It writes only the record containing BOB SMITH to its output stream. The
COUNT stage reads records from its input stream. There is only one record: BOB
SMITH. COUNT tallies the number of words in that record and writes a single record
to its output stream. That record contains the number 2, which is the number of
words in the record read by the COUNT stage.

The PIPE Command
To run a pipeline, use the CMS PIPE command. Like other CMS commands, PIPE
can be entered from the CMS command line or from an exec. PIPE accepts one or
more pipelines as operands. In the first few chapters of this book, the PIPE
command operands consist of only a single pipeline. Multiple pipelines are
described in Chapter 6, “Multistream Pipelines,” on page 107.

In a pipeline, stages are separated by a character called a stage separator:
pipe stage_1 | stage_2 | ... | stage_n

Do not place stage separators after the last stage.

Input records ┌──────────────┐ Output record
┌───────────┐ │ LOCATE /BOB/ │ ┌───────────┐
│ BOB SMITH │ │ Stage │ │ BOB SMITH │
│ SUE JONES │ ────�│ ├───� └───────────┘
└───────────┘ │ │

│ │
└──────────────┘

Figure 6. Records Flowing through a LOCATE Stage

┌──────────────┐ ┌──────────────┐
│ LOCATE /BOB/ │ │ COUNT WORDS │

┌───────────┐ │ Stage │ ┌───────────┐ │ Stage │ ┌───────────┐
│ BOB SMITH │ ────�│ ├───� │ BOB SMITH │ ─────�│ ├───� │ 2 │
│ SUE JONES │ │ │ └───────────┘ │ │ └───────────┘
└───────────┘ │ │ │ │

└──────────────┘ └──────────────┘

Figure 7. Records Flowing through Multiple Stages

Pipeline Basics

4 z/VM: CMS Pipelines User’s Guide

For the default stage separator, the PIPE command expects the character X'4F'.
You must determine which key on your terminal generates the character X'4F'. It is
a solid vertical bar (|) on American and English 3270 terminals. In some countries,
this character is displayed as an exclamation mark (!). Some workstation terminal
emulator programs map the solid vertical bar to the split vertical bar (¦). The solid
vertical bar is the logical-or operator in PL/I and REXX programs. In a pipeline, it
indicates where one stage ends and another one begins. If you aren’t sure what
character to use, create and run the exec in Figure 8.

There is no limit (other than available space on the command line) to the number of
stages you can specify. For your first pipeline, try this PIPE command:
pipe < profile exec | count lines | console

If you do not have a PROFILE EXEC, substitute the name of any existing file. Be
careful to leave a space after <. The number of lines in your PROFILE EXEC is
displayed. If you make a mistake typing the command, an error message is
displayed. Just type the command again, correcting the mistake. Figure 9 shows a
map of the above pipeline.

The example contains three stages. Each stage consists of a stage plus operands:

< profile exec
The < (read file) stage reads a file and writes all of the file records to its
output stream. As used here, the < stage reads your PROFILE EXEC and
writes each record to its output stream.

count lines
The COUNT stage counts items on the records it reads from its input
stream. COUNT has operands that let you tell it what to count (such as
bytes, words, or the records themselves). As used here, the LINES operand
causes COUNT to tally the count of the input records. The records that
COUNT reads are the records written by the < stage. (That is, the output of
< becomes the input to COUNT.) So, COUNT tallies the count of records in

/* STAGESEP EXEC */
say 'The stage separator is:' '4f'x'.'
exit

Figure 8. Finding the Stage Separator

Stage 1 Stage 2 Stage 3
┌────────────────┐ ┌────────────────┐ ┌────────────────┐
│ < profile exec ├───�│ count lines ├───�│ console │
└────────────────┘ └────────────────┘ └───────────┬────┘

� │
│ │
│ │
│ 	

┌────┴────┐ ┌─────────┐
│ │ │ │
│ PROFILE │ │ Terminal│
│ EXEC │ │ │
│ file │ │ │
│ │ │ │
└─────────┘ └─────────┘

Figure 9. Map of Your First Pipeline

Pipeline Basics

Chapter 1. Pipeline Basics 5

your PROFILE EXEC. Then COUNT writes a single record containing the
tally to its output stream. COUNT writes only one record—it does not write
the records from the PROFILE EXEC to its output stream.

console
The CONSOLE stage either reads from your console or writes to it,
depending on its position in the pipeline. As used here, the COUNT stage
reads records from its input stream and displays them on the console. Only
one record is in its input stream. That record, written by COUNT, contains
the count of the lines in your PROFILE EXEC.

Notice that both < and CONSOLE work with devices. In the example, < reads a
disk file and CONSOLE writes to the console. Stages that convey data between the
pipeline and the outside world are called device drivers.

One advantage of CMS Pipelines is that you can use a different device by changing
only one stage. To change the above example to write the count to a file instead of
the console, just substitute a > stage for CONSOLE. Here’s how:
pipe < profile exec | count lines | > yourfile data a

The > (write file) stage writes all records in its input stream to a file. Specify the file
name as an operand. Remember to leave a space after the > symbol. The > stage
creates a new file or replaces an existing file named YOURFILE DATA A. A file
mode must be specified, as shown.

Device Drivers
Device drivers are stages that interact with devices or other system resources. The
simplest pipelines consist of two device drivers. Data read from one device moves
through the pipeline to the other device. For example, to copy data from a file to
your terminal, enter the following command (change TEST DATA to the name of an
existing file):
pipe < test data | console

The results are like those of the CMS TYPE command. Figure 10 shows a map of
this pipeline.

The < stage reads the file TEST DATA and writes each record to its output stream.
The output of the < stage is connected to the input of CONSOLE. CONSOLE reads
the records from its input stream and displays them on the screen.

Stage 1 Stage 2
┌─────────────┐ ┌─────────────┐
│ < test data ├───�│ console │
└─────────────┘ └───────┬─────┘

� │
│ 	

┌────┴─────┐ ┌──────────┐
│ TEST │ │ Terminal │
│ DATA │ │ │
│ file │ │ │
└──────────┘ └──────────┘

Figure 10. Map of a Pipeline with Two Device Drivers

Pipeline Basics

6 z/VM: CMS Pipelines User’s Guide

CMS Pipelines includes many device-driver stages. They work with tapes, printers,
disk files, XEDIT data, the console, the reader, the program stack, REXX variables,
and the system environments. Although not all of these are true devices, stages
that work with them are called device drivers. Commonly used device drivers are
described in Chapter 4, “Device Drivers,” on page 59.

The device drivers used most often in this book are <, >, >>, CONSOLE, CP, CMS,
and LITERAL. You have already seen some of these. Let’s look at some examples
of the others. The following pipeline uses the CMS device driver:
pipe cms listfile * * a | > yourlist data a
Ready;

The CMS device driver passes the LISTFILE command to CMS for execution and
writes the results of LISTFILE to its output stream. (The results are not displayed on
your terminal.) The second stage is a > device driver. The > device driver reads
records from its input stream and writes them to the file YOURLIST DATA A.

The CP device driver works in a similar fashion. Use it to capture the responses of
CP commands. In this example, the CP stage passes the string QUERY USERS to CP.
The results are passed to the next stage, which writes them to a file named USERS
DATA A.
pipe cp query users | > users data a
Ready;

LITERAL is a very useful device driver. It writes a string to its output stream. In this
PIPE command, LITERAL writes the string Testing 1, 2, 3 to its output stream.
The CONSOLE stage reads that record and displays it:
pipe literal Testing 1, 2, 3 | console
Testing 1, 2, 3
Ready;

How would you write the same string to a file? Substitute a > stage for CONSOLE.

The >> (append file) device driver adds records to the end of an existing file, or
creates a file if it does not exist. The following PIPE command adds the record The
End to the file USERS DATA A:
pipe literal The End | >> users data a
Ready;

Filters
Device drivers let you get data in and out of a pipeline. Filters are stages that work
on data already in the pipeline. The COUNT stage used in the first example pipeline
is a filter. It counts every record that flows into it from its input stream. Then it writes
one record containing that count to its output stream. The LOCATE stage is also a
filter. It examines the records from its input stream, looking for those that match a
specified string. If the record matches, LOCATE writes the record to its output
stream. LOCATE discards records that do not match. (See Figure 5 on page 3 and
Figure 6 on page 4.)

Filters can do any function imaginable. Many filters are built into CMS Pipelines, but
you can also code your own using the REXX language.

The filters supplied with CMS Pipelines do many functions of general use. For
example, they select records based on the content of the record or on the position
of the record in the stream flowing through the pipeline. They change or rearrange

Pipeline Basics

Chapter 1. Pipeline Basics 7

records as they pass through. They can even sort records. Commonly used filters
are described in Chapter 2, “Filters,” on page 17.

Note: Stages are grouped into the categories filter, device driver, host command
interface, or other for convenience. To the PIPE command, they are all just
stages that happen to do different kinds of functions.

Specifying PIPE Options
In addition to an operand (consisting of one or more pipelines), the PIPE command
accepts one or more options. PIPE options reassign the stage separator, trace
execution of the pipeline, control the level of messages displayed, and so on. A
complete list of the PIPE options is in the z/VM: CMS Pipelines Reference.

This book describes several PIPE options as the need arises. To show you how to
specify a PIPE option, let’s use the STAGESEP option. STAGESEP assigns the
stage separator to a different character. By default, the stage separator is a vertical
bar (|). To use a question mark as the stage separator, for example, specify
stagesep ? as shown in Figure 11.

As shown, PIPE options should be enclosed within parentheses after the PIPE
keyword. When specifying more than one option, separate them with blanks. The
first stage of the pipeline begins immediately after the options.

Understanding Pipelines
New pipeline users often think that each stage of a pipeline processes all the
records before writing results to the next stage. This is not true. Most stages
process only one record at a time. CMS Pipelines controls when the stages run. It
knows which stages have a record to process and which do not. The order in which
stages run is unpredictable.

Because CMS Pipelines usually lets each stage process only one record at a time,
only several records are in the pipeline at any moment—minimal virtual storage is
used. This is an important characteristic of pipelines. It means that if you process a
file containing one million records, you do not need to worry about having enough
virtual storage to hold all those records.

There are times, however, when all the records are held in virtual storage. Some
stages need to read all the records before they can do their work. For example, the
SORT stage cannot sort the records in the pipeline until it has read all the records.
After it sorts the records, it writes those records, one at a time, to its output stream.
But, these filters are exceptions. They are said to buffer the records. Both this book
and the z/VM: CMS Pipelines Reference indicate when a stage buffers records.

Pipelines in Execs
The PIPE command can be run from within an exec, just like any other CMS
command. This section describes several different uses of pipelines within execs.

pipe (stgsubsep ?) literal one two three ? count words ? console
3

Figure 11. Specifying an Option on the PIPE Command

Pipeline Basics

8 z/VM: CMS Pipelines User’s Guide

Preserving a Pipeline
One reason to use a pipeline within an exec is to save it so you can run it again.
This simple REXX exec contains a comment, a PIPE command, and an EXIT
instruction:
/* WORDS EXEC counts the number of words in PROFILE EXEC. */
'pipe < profile exec | count words | console'
exit

The PIPE command reads the file named PROFILE EXEC, counts the number of
words, and displays that number. PIPE is a CMS command, so it should be
enclosed in single or double quotation marks as shown. To run the pipeline, run the
exec as usual (by typing WORDS).

A more useful exec would let you specify a different file identifier:
/* WORDS EXEC counts the number of words. */
parse arg fileid
'pipe <' fileid '| count words | console'
exit

The exec reads an argument and substitutes that argument for the variable fileid
in the PIPE command, just as it would with any other CMS command in an exec.

Continuing Pipelines on Several Exec Lines
With experience, you will write longer pipelines. Rather than string out the PIPE
command on a single line, use REXX continuation characters to split it onto several
lines, as in the following example. The comma (,) is the REXX continuation
character.
/* WORDS EXEC counts the number of words. */
parse arg fileid
'pipe <' fileid,

'| count words',
'| console'

The lines in the example are indented to improve readability.

To continue a REXX string, enclose the string in single quotation marks and put the
comma after the ending single quotation mark. In the example, fileid is not
enclosed in quotation marks because it is a REXX variable (not part of a string).

REXX replaces the continuation character with a blank when it interprets the lines.
If you do not want REXX to put a blank between the lines when it interprets them,
use the REXX concatenation symbol (||):
/* Continuation without an intervening blank */
'pipe',

'literal Hello'||,
'| console'

When REXX interprets the lines, there is no blank between Hello and the following
stage separator:
'pipe literal Hello| console'

Because trailing blanks are significant to some stages, it is important to remember
how to use the concatenation symbol.

See z/VM: REXX/VM Reference for more about the REXX continuation character.

Pipeline Basics

Chapter 1. Pipeline Basics 9

Using Pipelines As Part of an Exec
Pipelines can also be used to do tasks within a larger exec. Several device drivers
are provided that read and write exec variables from a pipeline. After the data is in
the pipeline, you can use filter stages to change that data.

Most experienced exec writers start using pipelines by substituting a PIPE
command for the CMS EXECIO command. For example, the following exec
fragment uses the EXECIO command to read the file TEST DATA into a stem
variable (LINES.):
...
'EXECIO * DISKR TEST DATA A (FINIS STEM LINES.'...

To do that with a pipeline, use:
...
'pipe < test data a | stem lines.'...

STEM is a device driver that puts the contents of the pipeline into a stemmed array.
(STEM is described in “STEM Stage” on page 65.)

Often the next step in using pipelines is moving other exec functions into the
pipeline. Usually CMS Pipelines can do the work more efficiently. Continuing the
above example, suppose that the stemmed variables are sorted after being set by
EXECIO:
...
'EXECIO * DISKR TEST DATA A (FINIS STEM LINES.'
call mysort /* Call a subroutine to sort LINES.n */...

Rather than use interpreted REXX instructions to sort the stemmed array, you can
sort it in the PIPE command:
...
'pipe < test data a | sort | stem lines.'...

The SORT stage sorts the records. (SORT is described in “Sorting Records
(SORT)” on page 49.)

Another popular use of pipelines in execs is to simplify the code needed to get
command results. For example, the following code fragment lists files on a given file
mode and invokes the MYFILE EXEC for each file in the list:
/* Code fragment */...
address command
'MAKEBUF' /* Get a new stack */
theirs=queued() /* Learn what is already there */
'LISTFILE * *' fm '(STACK FTYPE' /* Issue a LISTFILE command */
do queued()-theirs /* Loop through our entries */

pull afn aft /* Pull one off the stack */
'EXEC MYEXEC' afn aft /* Build and execute a command */

end
'DROPBUF' /* Discard the stack */...

This single PIPE command does the same thing:

Pipeline Basics

10 z/VM: CMS Pipelines User’s Guide

/* Code fragment using pipelines */...
'pipe',

'cms LISTFILE * *' fm '(FTYPE', /* Issue a LISTFILE command */
'| specs /EXEC MYEXEC/ 1 1-* nextword', /* Build a MYEXEC command */
'| cms', /* Pass it to CMS */
'| console' /* Display any responses */...

The first stage is a CMS stage. The CMS stage passes its operand to CMS for
execution. In this example, the operand is a LISTFILE command. CMS writes the
response lines from LISTFILE to its output stream. For each file listed, the SPECS
stage builds a record containing the words EXEC MYEXEC followed by the file name
and file type. SPECS writes these records to its output stream. Do not worry about
understanding SPECS now. It is described in “SPECS Stage” on page 35. The
second CMS stage reads the records written by SPECS and passes them to CMS.
CONSOLE displays any messages or responses produced by MYEXEC.

When writing execs, treat PIPE as you would treat any other CMS command. There
is nothing wrong with entering many PIPE commands in a single exec. It is also
valid to call an exec from a pipeline even if that exec contains other PIPE
commands. For example, suppose an exec named TEST contains a PIPE
command. It is valid to call TEST from another PIPE command, as follows:
pipe cms exec test | console

Return Codes
Each stage of the pipeline gives a return code when it ends, but PIPE returns only
one return code. PIPE returns the worst return code from all the stages in the
pipeline. (Any negative return code is worse than any positive return code.)

You can put options following the PIPE command to display a message with each
return code from each stage and to list stages that return with a nonzero return
code; see the PIPE command description in z/VM: CMS Pipelines Reference.

When the PIPE command is entered at the terminal, the return code is displayed as
part of the Ready; message after the command ends (just as it is for any other CMS
command). In execs, the return code is stored in the variable RC. The following
example shows a test for a nonzero return code after the PIPE command:
/* Code fragment using pipelines */...
'pipe',

'cms LISTFILE * *' fm '(FTYPE', /* Issue a LISTFILE command */
'| specs /EXEC MYEXEC/ 1 1-* nextword', /* Build a MYEXEC command */
'| cms', /* Pass it to CMS */
'| console' /* Display any responses */

if rc¬=0 then /* Test for return code */
say 'Return code=' rc 'from PIPE.'...

User-Written Stages
There are two kinds of stages: built-in stages, and user-written stages. Built-in
stages are supplied with CMS Pipelines. User-written stages are written by you (or
some other user).

Pipeline Basics

Chapter 1. Pipeline Basics 11

User-written stages are programs written in REXX or Assember language. These
REXX or Assembler programs have input and output streams. A typical user-written
stage reads a record from its input stream, modifies that record, and then writes the
record to its output stream.

CMS Pipelines provides pipeline subcommands and assembler macros that you can
use in your stage to interact with the calling pipeline. For example, the READTO
subcommand reads a record from the input stream, while the OUTPUT
subcommand writes a record to the output stream. Pipeline subcommands are
described in Chapter 5, “Writing Stages,” on page 75 and in Chapter 6, “Multistream
Pipelines,” on page 107. Pipeline Assembler macros are described in Chapter 5,
“Writing Stages,” on page 75.

One pipeline subcommand, named CALLPIPE, lets you write subroutine pipelines
within user-written stages. Subroutine pipelines consist of sections of pipelines.
When a CALLPIPE subcommand is executed, the section of pipeline is, in effect,
inserted into the pipeline that called the user-written stage. Subroutine pipelines let
you preserve often-used sequences of stages so that they can be easily reused in
other pipelines.

Because any stage is used by specifying its name, those you write can be easily
shared with others. Users of your stages need to know only what the stages do to
records flowing through them. They do not need to set up complicated parameter
lists. Records go in and records come out.

Reading Interactive Dialogs
This book contains many examples that show commands entered at the terminal
and the system’s responses. Commands and data entered by a user are shown in
highlighted text while system responses are not. For example:
tell yourid hi
16:42:30 * MSG FROM YOURID : hi
Ready;

How to Read Syntax Diagrams
This document uses diagrams (often called railroad tracks) to show the syntax of
external interfaces.

To read a syntax diagram, follow the path of the line. Read from left to right and top
to bottom.

v The ��─── symbol indicates the beginning of the syntax diagram.

v The ───� symbol, at the end of a line, indicates that the syntax diagram is
continued on the next line.

v The �─── symbol, at the beginning of a line, indicates that the syntax diagram is
continued from the previous line.

v The ───� symbol indicates the end of the syntax diagram.

Within the syntax diagram, items on the line are required, items below the line are
optional, and items above the line are defaults. See the following examples.

Pipeline Basics

12 z/VM: CMS Pipelines User’s Guide

Syntax Diagram Convention Example

Keywords and Constants:

A keyword or constant appears in uppercase letters.
In this example, you must specify the item
KEYWORD as shown.

In most cases, you can specify a keyword or constant
in uppercase letters, lowercase letters, or any
combination. However, some applications may have
additional conventions for using all-uppercase or
all-lowercase.

�� KEYWORD �

Abbreviations:

Uppercase letters denote the shortest acceptable
abbreviation of an item, and lowercase letters denote
the part that can be omitted. If an item appears
entirely in uppercase letters, it cannot be abbreviated.

In this example, you can specify KEYWO, KEYWOR,
or KEYWORD.

�� KEYWOrd �

Symbols:

You must specify these symbols exactly as they
appear in the syntax diagram.

* Asterisk
: Colon
, Comma
= Equal Sign
- Hyphen
() Parentheses
. Period

Variables:

A variable appears in highlighted lowercase, usually
italics.

In this example, var_name represents a variable that
you must specify following KEYWORD.

�� KEYWOrd var_name �

Repetitions:

An arrow returning to the left means that the item can
be repeated.

A character within the arrow means that you must
separate each repetition of the item with that
character.

A number (1) by the arrow references a syntax note
at the bottom of the diagram. The syntax note tells
you how many times the item can be repeated.

Syntax notes may also be used to explain other
special aspects of the syntax.

�� � repeat �

�� �

,

repeat �

�� �
(1)

repeat �

Notes:

1 Specify repeat up to 5 times.

Required Item or Choice:

When an item is on the line, it is required. In this
example, you must specify A.

When two or more items are in a stack and one of
them is on the line, you must specify one item. In this
example, you must choose A, B, or C.

�� A �

�� A
B
C

�

Pipeline Basics

Chapter 1. Pipeline Basics 13

Syntax Diagram Convention Example

Optional Item or Choice:

When an item is below the line, it is optional. In this
example, you can choose A or nothing at all.

When two or more items are in a stack below the line,
all of them are optional. In this example, you can
choose A, B, C, or nothing at all.

��
A

�

��
A
B
C

�

Defaults:

When an item is above the line, it is the default. The
system will use the default unless you override it. You
can override the default by specifying an option from
the stack below the line.

In this example, A is the default. You can override A
by choosing B or C.

��
A

B
C

�

Repeatable Choice:

A stack of items followed by an arrow returning to the
left means that you can select more than one item or,
in some cases, repeat a single item.

In this example, you can choose any combination of
A, B, or C.

�� � A
B
C

�

Syntax Fragment:

Some diagrams, because of their length, must
fragment the syntax. The fragment name appears
between vertical bars in the diagram. The expanded
fragment appears in the diagram after a heading with
the same fragment name.

In this example, the fragment is named “A Fragment.”

�� A Fragment �

A Fragment:

A

B
C

Message and Response Notation
This document might include examples of messages or responses. Although most
examples are shown exactly as they would appear, some content may depend on
the specific situation. The following notation is used to show variable, optional, or
alternative content:

xxx Highlighted text (usually italics) indicates a variable that represents the data
that will be displayed.

[] Brackets enclose an optional item that might be displayed.

{ } Braces enclose alternative items, one of which will be displayed.

| The vertical bar separates items within brackets or braces.

... The ellipsis indicates that the preceding item might be repeated. A vertical
ellipsis indicates that the preceding line, or a variation of that line, might be
repeated.

Pipeline Basics

14 z/VM: CMS Pipelines User’s Guide

Pipeline Help
There are three ways to get help information about CMS Pipelines. You can use the
z/VM HELP Facility, or you can use the HELP or AHELP stages of CMS Pipelines.
AHELP is provided by the author and may offer advanced assistance. All three
ways are described in the following sections.

Using the Online HELP Facility
You can receive online information about the commands described in this book
using the z/VM HELP Facility. For example, to display a menu of the CMS Pipelines
stages, pipeline subcommands, and assembler macros, enter:
help pipe menu

To display information about a specific stage or pipeline subcommand (the
BETWEEN stage in this example), enter:
help pipe between

To display information about the PIPE command, enter:
help pipe

To display a list of CMS Pipelines tasks, enter:
help pipe task

You can also display information about a message by entering one of the following
commands:
help msgid or help msg msgid

For example, to display information about message FPL001I, you can enter one of
the following commands:
help fpl001i or help msg fpl001i

For more information about using the HELP Facility, see the z/VM: CMS User’s
Guide. To display the main HELP Task Menu, enter:
help

For more information about the HELP command, see the z/VM: CMS Commands
and Utilities Reference or enter:
help cms help

Using the HELP Stage
CMS Pipelines includes a HELP stage that displays information about CMS
Pipelines messages, stages, and pipeline subcommands. To use it, enter a
one-stage PIPE command:
pipe help literal

The above example gets help information for the LITERAL stage. The word literal
is an operand of the HELP stage. To get help on any pipeline message, stage, or
pipeline subcommand, type its name as an operand of HELP.

Note: Using PIPE HELP provides the same online information provided by the
z/VM HELP Facility.

Pipeline Basics

Chapter 1. Pipeline Basics 15

CMS Pipelines remembers messages it has issued. To get help on the message
issued most recently, specify 0 as the operand on the HELP stage:
pipe help 0

If you omit the operand, it defaults to 0. The following PIPE command yields the
same result:
pipe help

CMS Pipelines remembers the ten messages issued before the last one. You can
get help for any of these messages without knowing its message number. For
instance, to get help for the next to last message, enter:
pipe help 1

Refer to the z/VM: CMS Pipelines Reference or the CMS/TSO Pipelines: Author’s
Edition for more information about the HELP stage.

Using the AHELP Stage
CMS Pipelines includes an AHELP stage that displays author information about
CMS Pipelines messages, stages, and pipeline subcommands in the same manner
as the HELP stage. AHELP often provides more advanced assistance than the
HELP stage. The function and syntax of the AHELP stage is identical to that of the
HELP stage.

Refer to the z/VM: CMS Pipelines Reference for more information about the AHELP
stage.

Migration Information
If you have been using the CMS Pipelines Programming RPQ, refer to Appendix C,
“Migrating to CMS Pipelines,” on page 267. That appendix summarizes the
differences between the CMS Pipelines and the Programming RPQ.

Reference Book
The z/VM: CMS Pipelines Reference and the CMS/TSO Pipelines: Author’s Edition
describe the PIPE command, CMS Pipelines stages and subcommands. All of the
descriptions contain examples. These books briefly describe some commonly used
stages and subcommands. If you are designing an application that will use CMS
Pipelines, browse through these books to find other topics that may do exactly what
you need.

Pipeline Basics

16 z/VM: CMS Pipelines User’s Guide

Chapter 2. Filters

CMS Pipelines has many filter stages. A filter reads data from its input stream, does
some work using that data, and writes the results to its output stream. The
difference between a filter and a device driver is that a filter does not interact with
devices or other system resources, as device drivers do.

The results that filters write can be far different from the data read. The CHANGE
stage, for example, writes a record to its output stream for every record it reads.
LOCATE, on the other hand, reads all the records, but writes only those that match
a search string. COUNT reads every record in its input stream, but writes only a
single record to its output stream. By stringing filters together, you can transform
raw data into useful results.

This chapter describes some commonly used filters:
v Filters that select records by content
v Filters that select records by position
v Filters that change records
v Miscellaneous filters:

– A filter for duplicating records
– A filter for counting records, words, and characters
– A filter for sorting records
– A filter for buffering records.

Some of the filters are similar in function and format to XEDIT subcommands.
These similarities are intentional and are intended to help you learn CMS Pipelines
quickly.

Selecting Records by Content
Several stages select pipeline records. That is, they read all records in the pipeline,
but write only those that meet some selection criteria. This section describes filters
that select records based on the content of the record itself. Those filters include:
v LOCATE and NLOCATE
v FIND and NFIND
v TOLABEL and FRLABEL
v UNIQUE.

All of these filters are case sensitive. In string comparisons, the words “Apple” and
“apple” are not considered equal. The CASEI stage can be used in combination
with these filters to do case insensitive comparisons.

Looking Everywhere in the Record (LOCATE, NLOCATE)
The LOCATE stage selects records having a particular string; NLOCATE selects
records not containing a particular string. By default, both filters look everywhere in
the record for the string you supply. You can specify input ranges to limit the scope
of the search.

© Copyright IBM Corp. 1991, 2009 17

LOCATE Stage
The LOCATE stage writes only the records containing a specific string. Suppose
you have a file named WINTER THOUGHTS that contains the following records:
I like winter.
Winter is cold.
WINTER FUN
winter sun

Figure 12 shows an example of LOCATE. The < stage reads the WINTER
THOUGHTS file and writes the records to its output stream. The next stage,
LOCATE, examines the records, looking for the string winter. If the record contains
the string, LOCATE writes it to its output stream. If it does not, LOCATE discards it.
The next stage, CONSOLE, displays the records that LOCATE writes.

Because LOCATE is case sensitive, it selects only the first and the last lines of this
file. LOCATE is looking for lowercase winter, but the second and third lines contain
Winter and WINTER.

What would happen if you looked for summer? Figure 13 shows the result.

Nothing in the file WINTER THOUGHTS matches summer so LOCATE does not
write anything to its output stream. Consequently, CONSOLE has nothing to display.
It is perfectly acceptable for LOCATE (or any other filter that selects records) not to
find anything. CONSOLE does not give an error when there aren’t any records in its
input stream. The pipeline remains intact—no error has occurred.

Before continuing with the next example of LOCATE, it is necessary to understand
a bit more about the LITERAL stage. The next few examples and, in fact, many of
the examples in the rest of the chapter use the LITERAL stage. LITERAL provides
an easy way to put data in a pipeline so that you can see what a filter does.

When LITERAL is first in a pipeline, it simply writes a record to its output stream.
That record contains whatever you type as the LITERAL operand. When LITERAL
is not first, it writes a record containing the operand, and then copies any records in
its input stream to its output stream. This is a very important characteristic of
LITERAL, and one that is easily forgotten. Remember: LITERAL writes before
copying. There is more about LITERAL in “Writing Literal Strings to a Pipeline
(LITERAL)” on page 60.

Look again at the example of LOCATE in Figure 12. Notice that slashes (/) are used
in LOCATE to delimit the string you are searching for. You can use any character to
delimit the string that is not itself in the string. To select records containing x/y for

pipe < winter thoughts | locate /winter/ | console
I like winter.
winter sun
Ready;

Figure 12. LOCATE Stage Example: Locating Records Containing the String

pipe < winter thoughts | locate /summer/ | console
Ready;

Figure 13. LOCATE Stage Example: Not Locating Records Containing the String

Filters

18 z/VM: CMS Pipelines User’s Guide

example, you might use commas as delimiters, as shown in Figure 14.

Note: When entering a PIPE command next to a file in the list displayed by
commands like FILELIST and RDRLIST, do not use the slash (/) as the
delimiter. The slash has a special meaning to these commands.

Using Input Ranges with LOCATE: It is possible to limit the search area
inspected by LOCATE. Simply enter an input range before the string operand. An
input range defines a particular location of the record on which LOCATE operates.
The first example in Figure 15 uses words as its input range, displaying records
with the letter o in the second word. A word, by default, is defined as characters
delimited by a blank. The second example defines the input range as columns,
looking for o anywhere in columns 1 through 7.

Notice in the second PIPE command example above that orange hat is displayed
before red shoe. Given the order of the LITERAL stages in the pipeline, this is not
what you might expect. To understand what happened, remember the rule that
LITERAL writes before copying. In the example, the first LITERAL stage writes a
record containing red shoe to its output stream. The second LITERAL stage writes
a record containing its operand (orange hat) to its output stream, and then copies
any records in its input stream to its output stream. So the orange hat record
travels through the pipeline before the red shoe record.

See the z/VM: CMS Pipelines Reference for a complete description of input ranges
under the LOCATE stage.

The LOCATE stage does not let you specify multiple strings. Instead, use multiple
LOCATE stages. For example, to locate records in NOVEL SCRIPT that have both
the strings mercurial and saturnine, you would enter:

pipe literal z=x/y | locate ,x/y, | console
z=x/y
Ready;

Figure 14. LOCATE Stage Example: Using Delimiters

pipe literal red shoe|literal orange hat|locate w2 /o/| console
red shoe
Ready;
pipe literal red shoe|literal orange hat|locate 1-7 /o/|console
orange hat
red shoe
Ready;

Figure 15. LOCATE Stage Example: Using an Input Range

pipe < novel script | locate /mercurial/ | locate /saturnine/ | console
Mary was mercurial. Sam, saturnine. Yet on this day ten years ago they wed.
Ready;

Figure 16. LOCATE Stage Example: Locating Multiple Strings

Filters

Chapter 2. Filters 19

If you want to locate records that have either saturnine or mercurial, you will need
to use a multistream pipeline. (See Figure 172 on page 118.)

Selecting Records By Length: You can select records that have some minimum
length by using LOCATE without a string. Instead, just specify a column. Figure 17
selects records having a length of 2 or more bytes.

Be careful about trailing blanks when you use LITERAL. Notice that a stage
separator immediately follows the strings in Figure 17—there are no trailing blanks.
Try putting a blank between a and the stage separator. LITERAL puts any trailing
blanks on records it writes. The blank is counted as a character, which means the
entire string is 2 characters long. LOCATE will then select the string.

Selecting Entire Records: There are instances where you will want to select
entire records, for instance when you want to remove all blank lines from a file. The
example in this section uses a file named BLNKNSTF SCRIPT that contains a
blank line:
now is the time
for your heart to skip a beat

and robins to herald the coming of spring

Figure 18 reads in your file, uses the STRIP stage to change all blank lines to null
(zero length) records, then uses LOCATE with no operands to remove all those
records in the file with a length of 0, and displays the remaining records as output
to the terminal.

NLOCATE Stage
NLOCATE does the opposite of the LOCATE stage. It writes all records that do not
contain the string specified as the operand. Figure 19 on page 21 shows an
example of NLOCATE that reads the file WINTER THOUGHTS. Suppose WINTER
THOUGHTS contains the following records:
I like winter.
Winter is cold.
WINTER FUN
winter sun

pipe literal a| locate 2 | console
Ready;
pipe literal ab| locate 2 | console
ab
Ready;

Figure 17. LOCATE Stage Example: Specifying Data Length

pipe < blnknstf script a | strip | locate | console
now is the time
for your heart to skip a beat
and robins to herald the coming of spring
Ready;

Figure 18. LOCATE Stage Example: Removing Blank Lines from File

Filters

20 z/VM: CMS Pipelines User’s Guide

Except for the use of NLOCATE instead of LOCATE, the pipeline is identical with
Figure 12 on page 18. As you would expect, the results are exactly opposite. The
first and last lines are not echoed because the string winter precisely matches the
NLOCATE argument. The second and third lines are echoed because Winter and
WINTER do not match the NLOCATE argument.

You can limit the range of columns inspected by NLOCATE. Specify a column range
before the string operand (just like LOCATE).

You can select short records with NLOCATE. Figure 20 shows how to select all
records having a length less than 5.

The record okay is selected because it has fewer than 5 characters.

Looking at the Beginning of a Record (FIND, NFIND, TOLABEL,
FRLABEL)

CMS Pipelines includes stages that look only at the beginning of a record. This
section describes four of them: FIND, NFIND, TOLABEL, and FRLABEL. FIND and
NFIND select records that begin with (or do not begin with, for NFIND) a particular
string. TOLABEL selects records before a record beginning with a particular string.
FRLABEL selects records after a record beginning with a particular string.

Note: The STRFIND, STRNFIND, STRTOLABEL and STRFRLABEL stages can
also be used. These stages affect records that begin with a specified string
of characters.

FIND and NFIND Stages
These stages select records according to whether the leading characters match the
argument string.

If you do not care what characters certain columns hold, use a blank. Blanks in the
argument string indicate columns whose contents are arbitrary, not columns
containing only a blank character. (This differs from the way LOCATE works—to

pipe < winter thoughts | nlocate /winter/ | console
Winter is cold.
WINTER FUN
Ready;

Figure 19. NLOCATE Stage Example: Locating Records

pipe literal too long| literal okay| nlocate 5 | console
okay
Ready;

Figure 20. NLOCATE Stage Example: Specifying Data Length

pipe literal abc | literal def | find ab| console
abc
Ready;

Figure 21. FIND Stage Example: Finding Records Containing the String

Filters

Chapter 2. Filters 21

LOCATE, a blank is a blank.) Figure 22 shows an example that selects records
beginning with the most, where any character can be between the and most.

How do you find a blank? Use an underscore (_) in the argument string to indicate
that a column must have a blank. See how the results change in Figure 23.

Because an underscore indicates a required blank, you cannot search for
underscores directly. Instead, use XLATE to transpose underscore and some other
character before the FIND or NFIND stage and restore them afterward. See
“Translating Characters (XLATE)” on page 27 for a description of the XLATE stage.

Be careful with blanks before the stage separator. If there are one or more blanks
between the string you want to find and the stage separator, these positions must
be present in the input record even if their contents are ignored. This is why
Figure 24 shows responses you might not expect. The input record is only one
character long, but the argument to FIND (and NFIND) is two bytes.

NFIND is the converse of FIND; it selects records that do not match the argument.

You can use FIND with a suitable number of blanks to select records of a certain
size (or longer), but it is simpler to use LOCATE with a column number to do this.
In a similar way, select short records with NLOCATE.

TOLABEL and FRLABEL Stages
TOLABEL copies records to its output stream until it meets a record that begins
with the argument string. TOLABEL does not write the matching record to its output
stream.

FRLABEL skips records until one is met with the required beginning; the record with
the matching string and the remaining records are copied to the output. It doesn’t
matter what is in the rest of the file, even if there is another matching record.

pipe literal thermostat | literal the most interesting| find the most| console
the most interesting
thermostat
Ready;

Figure 22. FIND Stage Example: Using Arbitrary Characters in the String

pipe literal thermostat | literal the most interesting| find the_most| console
the most interesting
Ready;

Figure 23. FIND Stage Example: Specifying a Blank in the String

pipe literal a| find a | console
Ready;
pipe literal a| nfind a | console
a
Ready;

Figure 24. FIND and NFIND Stages Examples

Filters

22 z/VM: CMS Pipelines User’s Guide

Figure 25 shows the examples of FRLABEL and TOLABEL selecting records from
an F-format file called TEST FILE.

FRLABEL and TOLABEL are often used in combination. For instance, Figure 26
shows how to select records from the label START and to (but not including) the
label END.

Note the blank after START and END. In this example, the blank after each argument
string will select the same records as it would if each argument string did not have
a trailing blank. Your results could vary from what is shown in Figure 26 if the
pipeline reads in a V-format file rather than an F-format file and the lines in the file
did not have trailing blanks. With them the pipeline would stop, for instance, without
any records being matched.

Looking at the End of a Record
There is no stage to select records that end with some particular string, but several
filters can be combined to do it. The trick is to copy the end of each record to the
beginning of each record. For that, you need to use the SPECS stage, which has
not yet been discussed. Refer to Figure 88 on page 47 to see an example of
looking at the end of a record.

Discarding Duplicate Records (UNIQUE)
There are two stages that get rid of duplicate records: SORT (with the UNIQUE
operand specified) and UNIQUE. They produce different results. Use UNIQUE when
the records are:

v Already sorted and you want to remove duplicates

pipe < test file | console
Text before START
START
Text in the middle
END
Text after END.
Ready;
pipe < test file | frlabel START | console
START
Text in the middle
END
Text after END.
Ready;
pipe < test file | tolabel END | console
Text before START
START
Text in the middle
Ready;

Figure 25. FRLABEL and TOLABEL Stages Examples

pipe < test file | frlabel START | tolabel END | console
START
Text in the middle
Ready;

Figure 26. FRLABEL and TOLABEL Stages Example

Filters

Chapter 2. Filters 23

v Not sorted and you want to remove duplicates that happen to be adjacent to
each other.

Use SORT UNIQUE when you have unsorted records and you want to discard
duplicates while sorting those records. SORT UNIQUE is described in “Discarding
Duplicates When Sorting” on page 51.

The UNIQUE stage gets rid of duplicate records that happen to be next to each
other. It does not compare each record with all other records. If the records are
already sorted, all duplicates are next to each other. Using UNIQUE in this case
causes all duplicates to be discarded.

If the records are not sorted, duplicates may not be next to each other, so UNIQUE
may not remove them all.

UNIQUE compares each input record with the next one. By default it discards a
record that has the same contents as the following one. That is, series of identical
records are replaced with the last occurrence of the record.

Suppose you have a file named WEATHER INFO that contains the following
records:
It is raining today.
It is raining today.
It is raining today.
Next week may be better.
Always be an optimist.
Always be an optimist.
Always be an optimist.
It is raining today.

The records are not sorted, so not all duplicates are adjacent. UNIQUE will not
remove all duplicates (Figure 27).

Discarding Unique Records (UNIQUE MULTIPLE)
UNIQUE MULTIPLE discards records that do not have adjacent duplicates. It keeps
records that occur at least twice together. DUPLF EXEC, shown in Figure 28 on
page 25, uses UNIQUE MULTIPLE. It creates a list of files that exist on two
minidisks.

pipe < weather info | unique | console
It is raining today.
Next week may be better.
Always be an optimist.
It is raining today.
Ready;

Figure 27. UNIQUE Stage Example

Filters

24 z/VM: CMS Pipelines User’s Guide

DUPLF shows a useful characteristic of the CMS stage: it passes records in its
input stream to CMS. The CMS stage, you will recall, passes its operand to CMS
for execution. In DUPLF, the operand is a LISTFILE command. CMS writes any
responses from the command to its output stream. After processing its operand,
CMS reads its input stream. It passes each record in its input stream to CMS for
execution. CMS writes the responses from the commands to its output stream.

Assuming there are records in the pipeline for the CMS stage to read, you can omit
the operand. In this case, the input records are passed to CMS for execution and
CMS traps any responses.

In DUPLF, two LISTFILE commands are executed. The first one executed is the
operand of the CMS stage. The second one is the LISTFILE that LITERAL writes to
its output stream. The results are sorted to put duplicates together. Then UNIQUE
MULTIPLE is executed. A column range of 1.17 is specified on UNIQUE MULTIPLE
to restrict the test to the file name and file type. (The column range 1.17 specifies a
field that begins in column 1 and is 17 characters long.) Now the pipeline contains
records having duplicate file names and file types.

A second UNIQUE stage eliminates duplicate lines. The result, displayed by
CONSOLE, is one line for each file on both minidisks. Figure 29 shows a sample
run.

Selecting Records by Position (TAKE, DROP)
TAKE and DROP make it easy to select records based on their positions in the
input stream. The examples in this section use a file named STRING LIST that
contains a list of stringed instruments:
harp
lyre
lute

/* DUPLF EXEC -- Find files that are on two minidisks and report */
/* the first of each */

arg fm1 fm2 .
if fm2='' then exit 24 /* Incomplete parameters? */

address command
'PIPE',

'literal LISTFILE * *' fm2, /* Second listfile command */
'| cms LISTFILE * *' fm1, /* Execute both LISTFILEs */
'| sort', /* Put duplicates together */
'| unique 1.17 multiple', /* Select only duplicates */
'| unique 1.17 first', /* Take only the first */
'| console' /* Display them */

exit rc

Figure 28. UNIQUE MULTIPLE Stage Example (DUPLF EXEC Contents)

duplf a b
DSMUTTOC SCRIPT A1
TMF SAVED A1
Ready;

Figure 29. UNIQUE MULTIPLE Stage Example (DUPLF EXEC Results)

Filters

Chapter 2. Filters 25

viola
violin
bouzouki
oud
guitar
mandolin
harpsichord

The TAKE filter picks the first or last n records (where n is zero, or a positive
number, or * for all) for output to the pipeline. By default, TAKE selects the first
records. Figure 30, shown next, demonstrates taking the first 3 records.

To take the last records, specify the LAST operand on TAKE. Figure 31 shows how
to take the last 4 records.

The DROP stage is the converse of TAKE. It lets you discard the first or last n
records (where n is zero, or a positive number, or * for all). Figure 32, shown next,
drops the first two records from the file STRING LIST.

To drop the last records in the pipeline, use the LAST operand. Figure 33, shown
next, shows how to drop the last three records of the STRING LIST file.

pipe < string list | take 3 | console
harp
lyre
lute
Ready;

Figure 30. TAKE Stage Example

pipe < string list | take last 4 | console
oud
guitar
mandolin
harpsichord
Ready;

Figure 31. TAKE LAST Stage Example

pipe < string list | drop 2 | console
lute
viola
violin
bouzouki
oud
guitar
mandolin
harpsichord
Ready;

Figure 32. DROP Stage Example

Filters

26 z/VM: CMS Pipelines User’s Guide

By combining TAKE and DROP, you can get records in the middle. One use of this
would be removing top and bottom margins from formatted text files. Figure 34
shows how to get the fifth and sixth lines of the STRING LIST file.

Changing Records
CMS Pipelines includes stages that change the records passing through them. You
can:
v Translate characters to uppercase or to lowercase
v Substitute one character for another
v Split and join records
v Expand and truncate records
v Remove leading or trailing characters from records
v Replace a string with another string
v Rearrange the contents of a record.

REXX programmers will notice that many of these stages have counterparts in the
REXX language. The difference is that these stages work on all data flowing
through the stage, while in REXX they operate on a single expression.

Translating Characters (XLATE)
XLATE translates data passing through the pipeline on a character-by-character
basis. You can translate characters to lowercase or to uppercase. You can also
replace all occurrences of one character with another. Figure 35 shows how to
translate characters to uppercase:

Translating a string to lowercase is just as easy, as Figure 36 on page 28 shows.

pipe < string list | drop last 3 | console
harp
lyre
lute
viola
violin
bouzouki
oud
Ready;

Figure 33. DROP LAST Stage Example

pipe < string list | drop 4 | take 2 | console
violin
bouzouki
Ready;

Figure 34. TAKE and DROP Stage Example

pipe literal I'm NOT mad about it. | xlate upper | console
I'M NOT MAD ABOUT IT.
Ready;

Figure 35. XLATE Stage Example: Translating a String to Uppercase

Filters

Chapter 2. Filters 27

To limit the translation to certain columns, specify a column range after the XLATE.
(See Figure 37.)

The 17.5 defines a range of 5 columns starting on column 17. (Specifying 17-21
would yield the same result.)

With the UPPER and LOWER operands, many characters have been translated
with a single XLATE stage. It is also possible to translate individual characters.
Figure 38 shows how. Instead of specifying UPPER and LOWER operands, specify
pairs of characters after XLATE. The example in Figure 38 changes all e’s to X’s.

Notice that the capital E in Extra was not changed. XLATE is case sensitive. To
change both small and capital E’s to X’s, specify two pairs of characters after
XLATE (Figure 39).

You can specify many pairs of characters after XLATE. The characters are not
limited to those in the alphabet. You can also specify numbers, punctuation, and
hexadecimal values.

When you are specifying numbers, you may also need to specify a column range.
Otherwise, XLATE might mistake your first pair of numbers for a range of
characters. Figure 40 on page 29 shows a column range (1-*) on the XLATE stage,
followed by a number. The string 1-* indicates a range from column 1 through the
last column. This means that the complete record should be translated. The string
1-* is specified to ensure that CMS Pipelines parses the stage properly.

pipe literal I'm NOT mad about it. | xlate lower | console
i'm not mad about it.
Ready;

Figure 36. XLATE Stage Example: Translating a String to Lowercase

pipe literal Play piano, not forte. | xlate 17.5 upper | console
Play piano, not FORTE.
Ready;

Figure 37. XLATE Stage Example: Using a Column Range

pipe literal Extra eggplants free. | xlate e X | console
Extra Xggplants frXX.
Ready;

Figure 38. XLATE Stage Example: Translating Individual Characters

pipe literal Extra eggplants free. | xlate e X E X | console
Xxtra Xggplants frXX.
Ready;

Figure 39. XLATE Stage Example: Translating Multiple Characters

Filters

28 z/VM: CMS Pipelines User’s Guide

Instead of specifying characters directly, you can use hexadecimal values. This is
useful when you want to specify characters that you cannot type on your keyboard.
It is also useful when you want to specify a blank, which is the hexadecimal value
X'40'. Specify hexadecimal values by typing the two characters that make up the
byte. Figure 41 changes all parentheses to blanks.

You can also specify a range of characters (as opposed to a column range) to be
translated instead of individual characters. For example, suppose you want to
translate the numbers 3 through 5 to equal signs. One way to do it is by typing
each character:
...| xlate 1-* 3 = 4 = 5 = | ...

Figure 42 shows another way. It uses a character range to do the same translation.
The second PIPE command in Figure 42 also shows a character range. It removes
punctuation from a record by translating the punctuation to blanks. Hexadecimal
values are used in the second example.

You can specify ranges for both the input and the output. Figure 43 translates
characters 1 through 9 into the corresponding letters A through I.

To translate all but a few of the characters in a range, specify the range of
characters and also the characters you wish to omit. Before XLATE does any
translation, it determines whether any character is specified more than once in the
operands. XLATE uses only the last occurrence when translating the data.
Figure 44 on page 30 shows an example. The characters from c to g are translated

pipe literal 370 | xlate 1-* 3 E 7 S 0 A | console
ESA
Ready;

Figure 40. XLATE Stage Example: Specifying a Range

pipe literal x(x)x | xlate 1-* (40) 40 | console
x x x
Ready;

Figure 41. XLATE Stage Example: Specifying Hexadecimal Values

pipe literal 123456789 | xlate 1-* 3-5 = | console
12===6789
Ready;
pipe literal (In parentheses.) | xlate 1-* 41-7f 40 | console
In parentheses
Ready;

Figure 42. XLATE Stage Example: Using Ranges of Characters

pipe literal 123 12389 | xlate 1-* 1-9 A-I | console
ABC ABCHI
Ready;

Figure 43. XLATE Stage Example: Using Ranges for Input and Output

Filters

Chapter 2. Filters 29

to equal signs, except for the character e. The character e is translated to itself.

You can use the same technique to augment the built-in translations such as
uppercase or lowercase.

Splitting and Joining (SPLIT, JOIN)
The SPLIT and JOIN stages split and join records. Other filters are available that
block and deblock data in other formats, including some formats supported by MVS
access methods. For more information see, Chapter 9, “Blocking and Deblocking,”
on page 181.

SPLIT Stage
By default, SPLIT creates an output record for each blank-delimited word in its input
records. (See Figure 45.)

SPLIT has operands to define other kinds of splitting. See the z/VM: CMS Pipelines
Reference for a complete description of SPLIT.

JOIN Stage
JOIN creates a single record from one or more input records. By default, JOIN puts
together pairs of input records. (See Figure 46.)

LITERAL puts a record into the pipeline. SPLIT puts each of the five words on a
separate record. Then JOIN combines pairs of records. Because there weren’t an
even number of input records, JOIN puts words by itself in an output record. Notice
that JOIN puts records together without intervening blanks. To put a blank between
the joined records, specify / / as shown in Figure 47 on page 31.

pipe literal abcdefghi | xlate c-g = e e | console
ab==e==hi
Ready;

Figure 44. XLATE Stage Example: Overriding a Character Range

pipe literal A phrase with five words | split | console
A
phrase
with
five
words
Ready;

Figure 45. SPLIT Stage Example

pipe literal A phrase with five words | split | join | console
Aphrase
withfive
words
Ready;

Figure 46. JOIN Stage Example: Joining Pairs of Records

Filters

30 z/VM: CMS Pipelines User’s Guide

Between the delimiters (/) you can put any string you want to insert between the
joined records. In Figure 48, dashes (--) are inserted.

As usual, you can use any character not in the string itself as the delimiter.
Figure 49 shows question marks (?) used as delimiters.

You can also join more than two records with JOIN by telling it the number of
records to put together. Put the number after the JOIN keyword before any
delimited string. The number itself is the number of records to be joined to the first
one. If you want to join every three records, specify 2 not 3. Figure 50 joins every
three input records into one output record.

Because the number of input records is not evenly divisible by three, JOIN puts the
last two input records on a single output record.

To put all input records in a single output record, specify an asterisk (*) instead of a
number. Figure 51 on page 32 splits apart the record written by LITERAL and puts it
back together again.

pipe literal A phrase with five words | split | join / / | console
A phrase
with five
words
Ready;

Figure 47. JOIN Stage Example: Putting a Space between Joined Records

pipe literal A phrase with five words | split | join /--/ | console
A--phase
with--five
words
Ready;

Figure 48. JOIN Stage Example: Putting Strings between Joined Records

pipe literal A phrase with five words | split | join ?--? | console
A--phase
with--five
words
Ready;

Figure 49. JOIN Stage Example: Using String Delimiters

pipe literal A phrase with five words | split | join 2 / / | console
A phrase with
five words
Ready;

Figure 50. JOIN Stage Example: Joining More than Two Input Records

Filters

Chapter 2. Filters 31

Padding and Chopping (PAD, CHOP)
You can pad (expand) or chop (truncate) records so they have a desired length.
Often PAD and CHOP are combined to create a particular output format.

CHOP Stage
CHOP truncates each record after a column. Specify the column number after
CHOP. (See Figure 52.)

PAD Stage
PAD fills each record to the specified length with a pad character (the default is a
blank). You can request the pad character to be filled on the right or on the left.

Figure 53 chops the record at column 12 and then pads the record to column 20
with question marks (?). The pad character must follow the column number.

By default, PAD adds pad characters to the right side of the string. To add them to
the left, type left after pad as shown in Figure 54.

Figure 55 on page 33 combines CHOP and PAD to create records with fixed
lengths (here with a length of 10). The TEST DATA file being read into the pipeline
is a V-format file.

pipe literal Break up and make up | split | join * / / | console
Break up and make up
Ready;

Figure 51. JOIN Stage Example: Joining All Pipeline Records

pipe literal She loves me; she loves me not. | chop 12 | console
She loves me
Ready;

Figure 52. CHOP Stage Example

pipe literal She loves me; she loves me not. | chop 12 | pad 20 ? | console
She loves me????????
Ready;

Figure 53. PAD Stage Example

pipe literal She loves me; she loves me not.| chop 12 | pad left 20 . |console
........She loves me
Ready;

Figure 54. PAD Stage Example: Padding on the Left

Filters

32 z/VM: CMS Pipelines User’s Guide

In this example, PAD extends short records to 10 characters with question marks
(?) on the right. CHOP truncates records that are longer than 10 characters.

Combining PAD and CHOP to create fixed records is useful when you want to
create an F-format file. See Chapter 4, “Device Drivers,” on page 59 for more about
creating F-format files.

Removing Leading or Trailing Characters (STRIP)
Use the STRIP stage to remove blanks from the beginning and the end of records.
Figure 56 shows a simple STRIP example.

STRIP can also remove only leading or trailing blanks, as shown in Figure 57.

You can also use STRIP to remove characters other than blank. Use the STRING
operand to identify the string to be stripped.

pipe < test data | console
Short
This record will be truncated
Ready;
pipe < test data | pad 10 ? | chop 10 | console
Short?????
This recor
Ready;

Figure 55. PAD and CHOP Stages Example

pipe literal Hello? | strip | console
Hello?
Ready;

Figure 56. STRIP Stage Example

pipe literal c| literal b | literal a| join *| console
a b c
Ready;
pipe literal c| literal b | literal a| strip leading| join *| console
ab c
Ready;
pipe literal c| literal b | literal a| strip trailing| join *| console
a bc
Ready;
pipe literal c| literal b | literal a| strip| join *| console
abc
Ready;

Figure 57. STRIP Stage Example: Stripping Leading or Trailing Characters

Filters

Chapter 2. Filters 33

Changing and Rearranging Contents (CHANGE, SPECS)
The CHANGE and SPECS stages edit the contents of records passing through the
pipeline. CHANGE replaces one group of characters with another. SPECS can
rearrange record contents, add literal strings and record numbers, and convert
fields from one format to another (for example, from character to unpacked
hexadecimal).

CHANGE Stage
The CHANGE stage replaces one character or group of characters with another. It
is similar to the XEDIT CHANGE subcommand. For example, suppose you want to
change the name John to Martin in a file named STORY SCRIPT. You might enter:
pipe < story script | change /John/Martin/ | console

The CHANGE stage replaces the string John with the string Martin wherever it
occurs in every record in the pipeline. Note that Martin is 6 characters while John is
4. The strings do not have to be the same length.

Be careful when using CHANGE. The above CHANGE stage would change:
John Smith and Bob Johnson ate johnnycake.

to:
Martin Smith and Bob Martinson ate johnnycake.

Both John and Johnson were changed because there isn’t a blank after John in the
CHANGE stage. This may or may not be what you intended. The word johnnycake
was not altered because CHANGE is case sensitive.

The default is to change all occurrences in every record. You can limit the number
of substitutions per record by writing a number after the delimited strings. For
example, write 1 after the delimited strings to change only the first occurrence in
every record.

You can also limit CHANGE by specifying a range of columns. In Figure 59 on page
35, CHANGE searches for John only in the first four columns of each record.
Consequently, Johnson is not changed.

pipe literal 0000120| strip leading string /0/| console
120
Ready;
pipe literal bread meat bread| strip string /bread/| console
meat
Ready;
pipe literal bread meat bread lettuce bread| strip string /bread/| console
meat bread lettuce
Ready;

Figure 58. STRIP Stage Example: Stripping Nonblank Characters

Filters

34 z/VM: CMS Pipelines User’s Guide

The column range tells CHANGE where to look. It does not cause CHANGE to limit
replacements to the first four columns. Martin still replaced John even though
Martin goes beyond the fourth column.

Figure 60 shows two column ranges. CHANGE looks for John in columns 1 through
4 and in columns 20 through 23. Use parentheses as shown when entering more
than one column range. This time Johnson is changed because it begins in column
20:

CHANGE looks in all column ranges before changing the record. So, the fact that
Martin is longer than John does not prevent CHANGE from finding the second John
starting in column 20. In the output, Martinson begins in column 22.

If you are working with structured data and want to avoid changing the length of the
record, simply make the search or replacement strings the same length:
pipe < yourid netlog | change /MIKE /BARBARA / | console

You can specify up to 10 column ranges. If you specify more than one, delimit each
column range with at least one blank and enclose the set in parentheses. Make
sure the ranges are in ascending order and do not overlap.

SPECS Stage
The SPECS stage rearranges contents of records. It is one of the most versatile
stages. This section covers many SPECS operands, but it does not cover all of
them. After you have gained some experience with SPECS, refer to the z/VM: CMS
Pipelines Reference to see what other functions it offers.

SPECS creates output records by piecing together data from various sources. An
output record might contain snippets from an input record, a literal string that you
supply, and a record number that SPECS itself generates. For each piece of data
you want in the output records, you must tell SPECS where it is to get the data and
where it should be placed.

For example, suppose your input records contain names and addresses. Each
record contains a surname in columns 20 through 40, inclusive. The rest of each
input record contains the first name and the address of the person. For each input
record read, you want to create an output record containing only the surname.
What’s more, you want that surname to start in column 1 of the output record.

Here is the SPECS stage to do it:
...| specs 20-40 1 |...

pipe < story script | change 1-4 /John/Martin/ | console
Martin Smith and Bob Johnson ate johnnycake.
Ready;

Figure 59. CHANGE Stage Example: Using Column Ranges

pipe < story script | change (1-4 20-23) /John/Martin/ | console
Martin Smith and Bob Martinson ate johnnycake.
Ready;

Figure 60. CHANGE Stage Example: Using Several Column Ranges

Filters

Chapter 2. Filters 35

The first SPECS operand (20-40) tells SPECS where to get the data: from columns
20 through 40 of each input record. The second SPECS operand (1) tells SPECS
where to put that data in each output record: starting at column 1.

Now suppose you also want to extract the zip code from each input record and put
it after the surname in each output record. You need to add a few more operands to
SPECS. Assuming that the zip code is in columns 70 through 79 of each input
record, here is a SPECS stage to do it:
...| specs 20-40 1 70-79 22 |...

The operand 70-79 tells SPECS to get a second data item from columns 70 through
79 of each input record. The operand 22 tells SPECS to put that item in each output
record starting at column 22 (immediately after the 21-column surname).

The above two examples illustrate two very important aspects of SPECS:

v A group of operands identify and control each data item. The last example above
has two groups.

v Within a group, the operand that identifies the input item precedes the operand
that identifies where it is to be placed in the output record. These operands are
referred to as the input and output operands.

To describe SPECS, we’ll first show you various input operands. That is, we’ll show
you how to tell SPECS where to get data. Then we’ll show you various ways to tell
SPECS where to put that data in the output record. In all cases, the input and
output operands must be in the following order:

input output

Input Operands—Columns Numbers and Column Ranges: You have already
seen isolated SPECS stages that put pieces of input records in the output records.
Now let’s look at a complete PIPE command in Figure 61.

The SPECS operands indicate that columns 3 through 5 of each input record
should be written to each output record starting at column 1. As a result, the string
cde is extracted from the sole input record and is written in columns 1 through 3 of
the output record, which CONSOLE then displays.

In the example, none of the other letters in the input record are in the output record.
The output records start out empty. The only data in the output records is what you
tell SPECS to put in them.

To put additional data from each input record into each output record, use additional
groups of operands, as shown in Figure 62 on page 37.

pipe literal abcdefghij | specs 3-5 1 | console
cde
Ready;

Figure 61. SPECS Stage Example: Using Numbers to Identify Input

Filters

36 z/VM: CMS Pipelines User’s Guide

The operand 1 tells SPECS that you want the data in column 1 of the input record.
The operand 5 tells SPECS to put that data in column 5 of the output record.

By default, SPECS fills unassigned columns of the output records with blanks. In
the example, SPECS puts data in the output record in columns 1 through 3 and in
column 5, but not in column 4. SPECS puts a blank in column 4 for you. The output
record length is determined by the last assigned column. In the example, the output
record has a length of 5 characters.

You can use any of the usual formats for specifying column ranges. Figure 63 uses
the operand 4.5 to identify a column range of 5 characters starting with column 4. It
also uses the operand 4-6 to identify columns 4 through 6.

Figure 63 also shows that you do not need to build the output record in any
particular order. First SPECS puts data starting in column 5, then SPECS puts data
starting in column 1. There isn’t anything wrong with doing this. It is also valid to
refer to columns of the input record more than once. Notice that SPECS refers
twice to columns 4, 5, and 6.

An asterisk (*) in the second position of a column range means end of record, just
as it does on other stages. The example in Figure 64 uses an asterisk in the
column range. It removes characters from columns 1 through 8 of the input record.
All characters from column 9 to the end of the input record are copied to the output
record starting at column 1.

Using numbers to identify columns or column ranges on input records is useful
when the data is structured. In inventory records, for example, all part numbers are
likely to occur within a specific column range. However, not all data is structured in
this way. For processing other forms of data, the WORDS operand is often more
useful.

Input Operands—WORDS: The WORDS operand of SPECS lets you select data
from input records by word number (or word range) rather than column number (or
column range). To SPECS, a word is any delimited string of characters. A word

pipe literal abcdefghij | specs 3-5 1 1 5 | console
cde a
Ready;

Figure 62. SPECS Stage Example: Using More than One Group of Numbers

pipe literal 000Television | specs 4.5 5 4-6 1 | console
Tel Telev
Ready;

Figure 63. SPECS Stage Example: Using Various Column Ranges

pipe literal 12345678An input record | specs 9-* 1 | console
An input record
Ready;

Figure 64. SPECS Stage Example: Specifying the End of the Record

Filters

Chapter 2. Filters 37

cannot be null. The default delimiter is a blank. To change the delimiter character
use the WORDSEPARATOR operand. (WORDSEP and WS are abbreviations for
this operand).

Figure 65 shows two examples of WORDS. In both examples, the third word of the
input record is put in the output record starting at column 1. The CONSOLE stages
display the record. Note that each example, because it is not specified otherwise,
uses the default word delimiter of blank.

In the first example, the input operand words 3 identifies the third word in the input
record. Even though the input is expressed in words, the output is expressed in
columns. The output operand 1 tells SPECS that you want that word placed in the
output record starting in column 1. In the second example, the input operand w3
also indicates the third word. W is an abbreviation for WORDS, and the space
between WORDS and the number is optional.

You can also specify a range of words. Indicate word ranges in the same way that
you have been indicating column ranges. Figure 66 shows two examples.

The input operand word2-3 means words 2 through 3, inclusive (dog cat in the
example). The input operand word 2-* means from word 2 through the end of the
record (dog cat horse).

Input Operands—FIELDS: The FIELDS operand of SPECS lets you select data
from input records by field number (or field range) rather than word or column
number (or word or column range). To SPECS, a field is any delimited string of
characters. A field can be null. The default field delimiter is the tab character, or
X'05'. To change the field delimiter character use the FIELDSEPARATOR operand.
(FIELDSEP and FS are abbreviations for this operand).

Figure 67 on page 39 shows an example using FIELDSEParator and FIELDS. In
this example, the input data contains two fields separated by a dash (-): The
CONSOLE stage displays the record.

pipe literal See Joe compute. | specs words 3 1 | console
compute.
Ready;
pipe literal See Joe compute. | specs w3 1 | console
compute.
Ready;

Figure 65. SPECS Stage Example: Using the WORDS Operand

pipe literal fish dog cat horse | specs word2-3 1 | console
dog cat
Ready;
pipe literal fish dog cat horse | specs word 2-* 1 | console
dog cat horse
Ready;

Figure 66. SPECS Stage Example: Specifying Word Ranges

Filters

38 z/VM: CMS Pipelines User’s Guide

The operand fieldsep - identifies the dash as the character delimiting the fields.
Operand f1 1 specifies that the first field in the input record, torn, is placed in
column 1 of the output record, and operand f2 10 places the second field, asunder,
in column 10 of the output record. F is an abbreviation for FIELDS, and the space
between F and the number is optional.

You can also specify a range of fields. Indicate field ranges in the same way that
you have been indicating column or word ranges. Figure 68 shows two examples.

In the first example, the FIELDSEPARATOR operand fs blank defines fields as
separated by a blank character. The input operand field2-3 1 selects fields 2
through 3, inclusive (hook and worm in the example), and places them in the output
record starting in column 1. In the second example, the FIELDSEPARATOR
operand fs ? defines fields as separated by a question mark (?). The operand
fields-3;-2 5 specifies the third-from-last field and the second-from-last field as
the input locations to be placed starting in the fifth column of the output record.

You can mix references to columns, to words, and to fields in a single SPECS
stage. Use whatever format is most appropriate for the task at hand. There are also
ways to specify data that is not from the input records. The remaining sections on
input operands discuss how.

Input Operands—Literal Strings: The preceding examples all show how data
from the input records can be placed in the output records. Data can come from
sources other than the input records. One of those sources is a literal string
specified on the SPECS stage itself.

To specify a literal on SPECS, use a delimited string as the input operand instead
of a column or word reference to the input record. Delimit the string the same way
you delimit strings on other stages (such as LOCATE). Use any character that is
not in the string itself and that does not have a special meaning (such as a stage
separator). SPECS puts the string on every output record. For example, Figure 69
on page 40 puts the words Space Captain in the output record.

pipe literal torn-asunder| specs fieldsep - f1 1 f2 10 | console
torn asunder
Ready;

Figure 67. SPECS Stage Example: Using the FIELDS Operand

pipe literal fish hook worm water | specs fs blank field2-3 1 | console
hook worm
Ready;
pipe literal AB?CD?EF?GH?IJ?KL?MN | specs fs ? fields -3;-2 5 | console

IJ?KL
Ready;

Figure 68. SPECS Stage Example: Specifying Field Ranges

Filters

Chapter 2. Filters 39

As before, read the SPECS arguments in groups:
specs /Space Captain/ 1 1-* 15

────────┬──────── ──┬───
│ │
│ │

Group 1 Group 2

The input operand in the first group tells SPECS that the data to be put on the
output record is the string Space Captain. Notice that slashes (/) delimit the string.
The output operand 1 of that group puts the literal in the output record starting at
column 1. The second operand group puts the entire input record in the output
record starting at column 15, which happens to be after the Space Captain literal
string.

So far, the LITERAL stage has been used to put a record in the SPECS examples,
but usually the input stream contains many records. SPECS puts the literal string
Space Captain on each. For example, suppose you have a file named SPACE
CADETS listing the following names:
Bob
Mark
Joe
Mary
Sue

To make all of these people Space Captains, you could enter the following
command. In this case, question marks (?) are the delimiters.
pipe < space cadets | specs ?Space Captain? 1 1-* 15 | console
Space Captain Bob
Space Captain Mark
Space Captain Joe
Space Captain Mary
Space Captain Sue
Ready;

You are not required to use any of the input record in the output record. In
Figure 70, for example, SPECS reads two records from its input stream. Data from
these input records is not copied to the output records. Instead, only the string
fruit salad is put in each output record.

Usually you will use literal strings with regular characters. Occasionally you might
need to use hexadecimal characters (perhaps because you cannot type the desired
characters on your terminal). To do it, introduce the hexadecimal string as an
operand on SPECS, prefix the string of hexadecimal digits with the character x or h,

pipe literal Bob | specs /Space Captain/ 1 1-* 15 | console
Space Captain Bob
Ready;

Figure 69. SPECS Stage Example: Specifying A Literal String

pipe literal banana | literal melon | specs /fruit salad/ 1 | console
fruit salad
fruit salad
Ready;

Figure 70. SPECS Stage Example: Not Using Data from the Input Records

Filters

40 z/VM: CMS Pipelines User’s Guide

make sure you have an even number of digits, and end the string with a blank.
Because a blank marks the end of the hexadecimal string, there can be no blanks
in the hexadecimal string itself.

Figure 71 shows how to put a vertical bar (|) in the output record without it being
interpreted as a stage separator when the pipeline is processed. The contents of
the input record are put after the vertical bar.

So far you have been shown how to use data from input records and literal strings.
The last input operand to discuss puts a record number on each output record.

Input Operands—RECNO: To put record numbers in the SPECS output records,
use RECNO as an input operand. RECNO causes SPECS to generate a record
number in a 10-character field. The number is right-justified in the field and is
padded on the left with blanks. The first record has number one (1). The counter is
incremented by one for each output record.

Figure 72 shows an example in which the 10-character record number is positioned
at column 1 of the output record (RECNO 1). The record number is padded on the left
with 9 blanks. The input record is put immediately after the record number (1-* 11).

Output Operands—Columns and Column Ranges: The next few sections
describe various operands you can use to position data in output records. You have
already seen how to use column numbers. Figure 73 shows another example.

Figure 74 on page 42 shows what happens when you miscalculate. In this case,
Jones is copied to columns 1 through 5, and Raymond is copied to column 5. Raymond
overlays the s in Jones. Because you might want to do something like this
intentionally, no error message is produced.

pipe literal a line | specs x4f 1 1-* 2 | console
|a line
Ready;

Figure 71. SPECS Stage Example: Using a Hexadecimal Literal

pipe literal line2|literal line1|specs recno 1 1-* 11 | console
1line1
2line2

Ready;

Figure 72. SPECS Stage Example: Using the RECNO Operand

pipe literal Start me at column 15 | specs 1-* 15 | console
Start me at column 15

Ready;

Figure 73. SPECS Stage Example: Using Column Numbers for Output

Filters

Chapter 2. Filters 41

You can also specify a column range for the output operand. In this case, the input
field is truncated or padded on the right to fill the output range.

Output Operands—NEXT: Often you will want to put data on the output record in
the next available column. Use the NEXT output operand to do it. When NEXT is
used, you do not have to count columns.

In Figure 75, the operands recno 1 put the record number at the beginning of the
record. The operands 1-* next put the contents of the input record in the output
record at the next available space. In this case, the next available space is
immediately after the record number.

Output Operands—NEXTWORD: NEXTWORD is similar to NEXT. The difference
is that NEXTWORD puts a blank before the input data.

NEXTWORD does not put in a blank if there isn’t yet data in the output record.
Instead, NEXTWORD copies the input in column 1. Figure 76 shows an example.

Alignment Operands—LEFT, RIGHT, CENTER: The preceding sections
described various input operands and output operands. Another kind of operand is
the alignment operand. It aligns data within the output record. The alignment
operand follows the input and output operand pair, as follows:

�� inputoutput
alignment

�

In the following example, the string My Summer Vacation is centered in a range of 80
columns.

pipe literal Raymond Jones | specs 9-13 1 1-8 5 | console
JoneRaymond
Ready;

Figure 74. SPECS Stage Example: Overlaying Data

pipe literal My record | specs recno 1 1-* next | console
1My record

Ready;

Figure 75. SPECS Stage Example: Using the NEXT Operand

pipe literal flip flop | specs word2 nextword word1 nextword | console
flop flip
Ready;

Figure 76. SPECS Stage Example: Using the NEXTWORD Operand

Filters

42 z/VM: CMS Pipelines User’s Guide

When aligning data, SPECS strips the input field of leading and trailing blanks and
aligns what remains of the input field in the output field, truncated or padded as
necessary.

Figure 78 shows how to align lines on the right. The output field is from column 1
for 50 columns.

By default, data is aligned to the left when a column range is specified for the
output operand. Figure 79 shows an example in which the LEFT operand is
specified.

Conversion Operands: Another kind of SPECS operand is the conversion
operand. The conversion operand causes SPECS to convert data from one format
to another. You can, for example, convert a character input item to hexadecimal,
and have the resultant hexadecimal value placed in the output record.

A conversion operand for a data item is specified between the input and output
operands for that item. Thus, you now have four kinds of operands that can be
specified for a single data item. The order of operands for a given item must be as
follows:

�� input output
conversion alignment

�

The input and output operands must always be specified. The conversion and
alignment operands are optional. If desired, a conversion operand and an alignment
operand can be specified for a single data item.

Figure 80 on page 44 shows the first eight bytes of a packed file in hexadecimal.
Two output data items are specified. The group of operands for the first item is 1.4
c2x 1. The group of operands for the second item is 5.4 c2x 10. The operand c2x
is the conversion operand for both items.

pipe literal My Summer Vacation | specs 1-* 1-80 center | console
My Summer Vacation

Ready;

Figure 77. SPECS Stage Example: Aligning Data

pipe literal shorter|literal a long line|specs 1-* 1.50 right| console
a long line

shorter
Ready;

Figure 78. SPECS Stage Example: Aligning Data to the Right

pipe literal Aligned left | specs 1-* 1.50 left | console
Aligned left
Ready;

Figure 79. SPECS Stage Example: Aligning Data to the Left

Filters

Chapter 2. Filters 43

In SPECS, the operands 1.4 c2x 1 indicate that the first four bytes of the input
should be copied to column 1 of the output after being converted from character to
hexadecimal (c2x). The string 5.4 c2x 10 converts the next four bytes and positions
them at column 10 of the output record.

Figure 81 shows several other conversions. The conversion operand C2B converts
data from character to binary. B2C reverses the conversion. X2C converts from
hexadecimal to character—it requires an even number of hexadecimal characters.

The z/VM: CMS Pipelines Reference contains more information about using the
many conversion operands.

Advanced Uses of SPECS
This section describes several advanced uses of SPECS. You may want to skip this
section for now and refer back to it after you have some experience with SPECS.
The following sections describe how to combine several input records with SPECS,
how to write multiple output records, and how to use relative column references.

Combining Input Records: SPECS lets you process several input records at a
time. This is often useful when you want to process groups of related input records.
For example, suppose you are processing input records that are consistently
grouped as follows:
Record 1 of the group contains a name
Record 2 of the group contains a street address
Record 3 of the group contains the a city, state, and zip code

Now suppose that for each group of records you want to write one output record
that contains the state followed by the name. To do it, you would need to get the
name from the first record, skip the second record, and get the state from the third.
You can do it with the READ operand of SPECS.

The READ operand causes SPECS to read the next record from the input stream
without writing a record to the output stream. Look at the example in Figure 82 on
page 45.

pipe < proc copy | take 1 |specs 1.4 c2x 1 5.4 c2x 10 | console
00140C6F 00000050
Ready;

Figure 80. SPECS Stage Example: Converting Data

pipe literal 911| specs 1-* c2b 1 | console
111110011111000111110001
Ready;
pipe literal 911| specs 1-* c2b 1 | specs 1-* b2c 1 | console
911
Ready;
pipe literal F9F1F1| specs 1-* x2c 1 | console
911
Ready;

Figure 81. SPECS Stage Example: Additional Conversions

Filters

44 z/VM: CMS Pipelines User’s Guide

The first PIPE command displays the contents of the file ADDRESS DATA. There
are two addresses. Each address takes three records. The second PIPE command
displays the desired results.

Let’s analyze the SPECS stage. The first group of operands 1-* 4 takes the entire
input record, which contains the name, and puts it in the output record starting at
column 4. That is all you need to do with the first input record, so you specify a
READ operand to read the next input record, which contains the street address.
You do not want to do anything with the street address, so you specify a second
READ operand.

The operands following the second read in SPECS now refer to the third input
record. From this third input record, select the state abbreviation. The state
abbreviation always starts in column 20 of the input record and is two characters.
The operand group 20.2 1 puts the state abbreviation into the first and second
columns of the output record.

Notice that you are still working with the same output record even though you have
read three input records. After the state is put in the output record, SPECS writes
the single output record to its output stream. Then the whole process repeats for
the next three input records.

Writing Multiple Output Records: The WRITE operand causes SPECS to write
an output record without reading a new input record. It is the converse of READ.

Figure 83 shows an example that produces two output records for every input
record read.

pipe < address data | console
Smith, Joseph
3211 Titan Drive
Lake Town NY 11011
Jones, Susan
525 Main Street
Scranton PA 20192
Ready;
pipe < address data | specs 1-* 4 read read 20.2 1 | console
NY Smith, Joseph
PA Jones, Susan
Ready;

Figure 82. SPECS Stage Example: Using the READ Operand

pipe < winner file | console
NY Smith, Joseph
PA Jones, Susan
Ready;
pipe < winner file | specs word1 1 /state:/ nextword write 4-* 4 | console
NY state:

Smith, Joseph
PA state:

Jones, Susan
Ready;

Figure 83. SPECS Stage Example: Using the WRITE Operand

Filters

Chapter 2. Filters 45

Two data items are specified for the first output record: the state, which is taken
from the input record, and a literal string. The operands word1 1 put the state
abbreviation in the output record. The operands /state:/ nextword put a literal
string in the output record after the state.

These two groups of operands build the first output record. To write it, the WRITE
operand is specified next. The operands following write build the second output
record, which starts out empty, just as the first one did. Those operands, 4-* 4, put
the name portion of the input record into the second output record. A second
WRITE should not be specified at the end.

You can use both the READ operand and the WRITE operand in a SPECS stage.

Using Relative Column References: SPECS lets you refer to input columns by
relative position. For example, when you specify ranges (such as 1-7), the numbers
are relative to the beginning of the record. You can also use negative numbers to
refer to columns relative to the end of the record. SPECS and ZONE are examples
of filters with this facility.

For example, suppose the pipeline contains records of varying lengths. How can
you have SPECS write only the last column to the output record? It is not possible
with what has been discussed so far. Everything so far has been relative to the
beginning of the record. Because the lengths of the records differ, no single column
number will give the last column for all input records.

Instead, you need to refer to the last column by giving some number relative to the
end of the record. To do so, use a negative column number. When negative column
numbers are used in a column range, they must be separated by a semicolon (;).
The usual hyphen (-) or period (.) cannot be used. The example in Figure 84 shows
a SPECS stage that displays the last column of each record.

The argument pair -1;-1 1 means that the first column relative to the end of the
input record should be copied to column 1 of the output record. The input range of
-1;-1 is a range that refers to a single column. Think of the columns as being
numbered backward:
ABCDE <--record
54321 <--column numbers relative to the end of the record

abc <--record
321 <--column numbers relative to the end of the record

Figure 85 on page 47 shows a similar example. The third column relative to the end
of the input record is put in the output record at column 5.

pipe literal ABCDE| literal abc| specs -1;-1 1 | console
c
E
Ready;

Figure 84. SPECS Stage Example 1: Using Negative Relative Column Numbers

Filters

46 z/VM: CMS Pipelines User’s Guide

Suppose you want to see the last two columns. The input range should then be
-2;-1. Figure 86 shows the result.

You cannot reverse the order of the numbers in SPECS (in the preceding example,
specs -1;-2 1). This would make the beginning column of the range to the right of
the ending column.

Figure 87 shows what happens when you use a negative column number that is too
high. The entire record is returned. When the column number is too high in a
positive column range, the same result occurs.

Figure 88 shows you how to filter records by looking at the ends of the records. The
example finds all records ending in x. It is assumed that the file INPUT FILE
contains variable-length records.

The first SPECS stage copies the last column of each input record to column one of
the output record. It also copies the entire input record to the same output record.
After the end of the record is moved to the beginning, you can use FIND to select
those beginning with x. The second SPECS stage removes the first column of the
selected lines, restoring the original contents.

pipe literal ABCDE| literal abc| specs -3;-3 5 | console
a
C

Ready;

Figure 85. SPECS Stage Example 2: Using Negative Relative Column Numbers

pipe literal ABCDE| literal abc| specs -2;-1 1 | console
bc
DE
Ready;

Figure 86. SPECS Stage Example 3: Using Negative Relative Column Numbers

pipe literal ABCDE| literal abc| specs -600;-1 1 | console
abc
ABCDE
Ready;

Figure 87. SPECS Stage Example: Specifying Range Beyond the Input Record

pipe < input file | specs -1;-1 1 1-* next | find x| specs 2-* 1 | console

Figure 88. SPECS Stage Example: Looking at the End of a Record

Filters

Chapter 2. Filters 47

Miscellaneous Filters
This section describes several miscellaneous filters:

v DUPLICATE—duplicates input records.

v COUNT—counts characters, words, and records.

v SORT—sorts records.

v BUFFER—reads all input records before writing them.

Duplicating Records (DUPLICATE)
DUPLICATE makes copies of input records. It reads an input record and writes that
record one or more times to its output stream. For DUPLICATE’s operand, specify
the number of additional copies desired.

Figure 89 makes 2 additional copies of each input record.

Counting Characters, Words, and Records (COUNT)
The COUNT stage counts characters (bytes), words, or records in its input stream.
It writes a single record containing the count to its output.

Figure 90 shows an example in which three PIPE commands are entered. The first
counts the number of bytes in the file ALL NOTEBOOK, the second counts the
number of words, and the third counts the number of lines.

When counting words, the COUNT stage considers any blank-delimited string to be
a word. To COUNT, the TEST DATA file in Figure 91 on page 49 contains 10 words.

pipe literal Are we almost there? | literal Dad | duplicate 2 | console
Dad
Dad
Dad
Are we almost there?
Are we almost there?
Are we almost there?
Ready;

Figure 89. DUPLICATE Stage Example

pipe < all notebook | count bytes | console
2456
Ready;
pipe < all notebook | count words | console
347
Ready;
pipe < all notebook | count lines | console
67
Ready;

Figure 90. COUNT Stage Examples

Filters

48 z/VM: CMS Pipelines User’s Guide

The string of equal signs (=) counts as one word, and the string me--I also counts
as one word (not two).

COUNT lets you count several things at a time, as shown in Figure 92. The
operand CHARS is a synonym for BYTES.

When you specify more than one item, COUNT always returns results in this order:
characters, words, lines. The order in which you specify the operands does not
change the order of the results (Figure 93).

COUNT is also useful in multistream pipelines. See “COUNT, Revisited” on page
124 for more information.

Sorting Records (SORT)
The SORT stage orders pipeline records. SORT buffers the pipeline records; that is,
it reads all its input records before writing output records. The sorting is done in
virtual storage. SORT gives a message and a nonzero return code if the input is too
large to fit in storage.

For example, the following pipeline sorts the names of all files in your search order
having a file type of SCRIPT. The names of only the first 10 files are displayed.

==
Don't worry about me--I can take
care of myself.

Figure 91. COUNT Stage Example: Counting Words

pipe < all notebook | count chars words lines | console
2456 347 67
Ready;

Figure 92. COUNT Stage Example: Counting Several Items

pipe < all notebook | count lines chars | console
2456 67
Ready;

Figure 93. The Order of COUNT Results

Filters

Chapter 2. Filters 49

By default, records are sorted in ascending order. (You can use the ASCENDING
operand if you wish.) To sort records in descending order, specify the
DESCENDING operand, which is abbreviated to DESC in Figure 95.

Using Column Ranges When Sorting
You can also specify column ranges to be used in the sort. The records are sorted
by the contents of the column ranges. For example, Figure 96 sorts the names of
the files on file mode A by file type, and displays the first ten file names. (The file
types in a LISTFILE response start at column 10 and can be up to 8 characters
long.)

pipe cms listfile * script * | sort | take 10 | console
ASYNCMS SCRIPT A1
BOGUS SCRIPT A1
CHKAUTH SCRIPT A1
CHKFILE SCRIPT A1
COPY SCRIPT A1
FGETMSG SCRIPT A1
FPACK SCRIPT D1
GENERIC SCRIPT A1
LOCOR SCRIPT A1
LOGREC SCRIPT A1
Ready;

Figure 94. SORT Stage Example

pipe cms listfile * script * | sort desc | take 10 | console
YRDFTHLP SCRIPT D1
YEARDFT SCRIPT D1
YEAR SCRIPT D1
REXXSEND SCRIPT D1
REXXNOTE SCRIPT D1
REVOUT SCRIPT A1
REQUEST SCRIPT A1
QBRAPA SCRIPT P1
LOGREC SCRIPT A1
LOCOR SCRIPT A1
Ready;

Figure 95. SORT DESCENDING Stage Example

pipe cms listfile * * a | sort 10-17 | take 10 | console
NOT AUTHORIZ A1
TEMP DATA A1
TEST DATA A1
TEST1 DATA A1
TEXT DATA A1
DIRADD EXEC A1
DIRCOUNT EXEC A1
DISKSPAC EXEC A1
DUAL EXEC A1
FEXAM EXEC A1
Ready;

Figure 96. SORT Stage Example: Using a Column Range

Filters

50 z/VM: CMS Pipelines User’s Guide

To sort in descending order when a column range is used, use DESCENDING after
the column range. (See Figure 97.)

Discarding Duplicates When Sorting
Use SORT UNIQUE to discard duplicate records during a sort. Figure 98 shows
how to display a list of unique words in a file.

The < stage reads the file INPUT FILE. SPLIT puts each blank-delimited word on a
separate record. The records are then sorted in alphabetic order. The UNIQUE
operand on SORT causes duplicate records to be discarded. Finally, the unique
words are displayed on the console.

Counting and Discarding Duplicates While Sorting
The COUNT operand of SORT counts the number of duplicates of each record. It
discards duplicates, but adds a count of the number of duplicates to the beginning
of each remaining record. The count is right-justified in columns 1 through 10 of
each output record. The original input record follows, beginning in column 11.

Figure 99 shows two PIPE commands. The first command shows the contents of
the file that is sorted in the second PIPE command.

pipe cms listfile * * b | sort 10-17 descending | take 4 | console
MYBOOK SCRIPT B1
ROLLUP MODULE B1
DMSC5MST LIST3820 B1
TEST DATA B1
Ready;

Figure 97. SORT DESCENDING Stage Example: Using a Column Range

pipe < input file | split | sort unique | console

Figure 98. SORT UNIQUE Stage Example

pipe < sample data | console
one
two
two
three
three
three
four
four
four
four
Ready;
pipe < sample data | sort count | specs 1-10 1 11-* nextword | console

4 four
1 one
3 three
2 two

Ready;

Figure 99. SORT COUNT Stage Example: Counting and Discarding Duplicates

Filters

Chapter 2. Filters 51

Buffering Records (BUFFER)
The SORT stage buffers records in the course of its processing. There are other
times you might want to buffer records yourself. To do so, use the BUFFER stage.

BUFFER holds all the records until it has read the last input record. Then BUFFER
writes the records to the next stage. Use BUFFER any time the records must be
delayed until all input is read.

One such time is when you want to read lines of input from the terminal and write
the lines to the program stack. The lines might then be processed by an exec. The
STACK stage is a device driver that you can use to read from or write to the
program stack.

In the PIPE command in Figure 100, the CONSOLE stage reads records entered at
the terminal. The BUFFER stage holds all the records until it reads the last input
record. The last input record is the final record the user types before pressing enter
twice. Once BUFFER has read all the input records, it then writes the records to the
STACK stage.

If you remove the BUFFER stage from the PIPE command in Figure 100, the
CONSOLE stage reads an input record and writes it immediately to the STACK
stage which places the record on the program stack. Because CONSOLE reads not
only from the terminal but also from the program stack, the command loops.

BUFFER is also useful when a multistream pipeline stalls. See “Pipeline Stalls” on
page 131 for more information.

pipe console | buffer | stack

Figure 100. BUFFER Stage Example: Stacking Terminal Input Lines

Filters

52 z/VM: CMS Pipelines User’s Guide

Chapter 3. Host Command Interfaces

In CMS Pipelines, host command interfaces are stages within a pipeline that run
host environment commands. For instance, the CMS command query disk displays
information about the disks your user ID has accessed. CMS writes the response to
your terminal screen when you issue the command directly to CMS, or the
response can be captured and processed in a pipeline with a host command
interface stage.

There are several stages that can receive a response from a CMS or CP host
command or subcommand and can write it to the pipeline, or not. The CP stage
sends commands to CP and writes the response to the pipeline. The CMS and
COMMAND stages send commands to CMS and intercept the response normally
sent to the terminal. This allows you to control command responses and messages
that may be issued. For instance, you may choose to suppress error messages
while issuing a CP command. The SUBCOM stage passes subcommands to a
specified subcommand environment. The STARMONITOR stage connects to the CP
*MONITOR system service and writes the data it receives into the pipeline. The
STARSYS stage connects using the Inter User Communication Vehicle (IUCV) to a
two-way system service like *ACCOUNT and writes the system information it
retrieves into the pipeline. The STARMSG stage connects to the CP message
system service to intercept console output. A description of STARMSG may be
found in Chapter 7, “Event-Driven Pipelines,” on page 155.

This chapter introduces these CMS Pipeline’s host command interfaces and
describes how to use them. Syntax and reference information for all of the host
commands are documented in the z/VM: CMS Pipelines Reference.

Working with CMS and CP Commands
CMS, COMMAND, and CP are three useful stages that run CMS and CP host
environment commands. Instead of displaying the command response, however,
they put it in the pipeline. From there, you can use another stage to process the
data as you require.

CMS Stage
The CMS stage runs CMS commands and writes the response to its output stream.
For instance, suppose you want to save the output of a CMS QUERY DISK
command in a file named SPACE DATA A. You would enter:
pipe cms query disk | > space data a

This pipeline has two stages:

cms query disk
The CMS stage runs the QUERY DISK command. Instead of displaying the
QUERY DISK response, CMS writes the response to its output stream.

> space data a
This stage writes whatever is in its input stream to the file SPACE DATA A.
(The > stage writes data from the pipeline to a file. This kind of stage is
called a device driver, and will be described in detail later.)

If you want to have the command output displayed on the terminal and saved in a
file, add a CONSOLE stage to your pipeline:
pipe cms query disk | > space data a | console

© Copyright IBM Corp. 1991, 2009 53

If the supplied string is not recognized as a CMS command, it is passed to CP. In
this case, however, CP writes the response directly to your terminal; the CMS stage
does not write the response to its output stream. To put the response of a CP
command in a pipeline, use the CP stage instead of CMS.

To run a CMS command from a pipeline without having the response records
written to the pipeline, use the SUBCOM stage. (See page 55 for a description of
SUBCOM.) When processed by SUBCOM, CMS commands are executed as
though they were entered from the command line or with a REXX ADDRESS CMS
instruction.

COMMAND Stage
The COMMAND stage also issues CMS commands. It passes the command to
CMS for execution as if the command were invoked using ADDRESS COMMAND
from REXX/VM. You should specify the command in uppercase unless you wish to
execute the command with mixed case names or operands.

For instance, suppose you want to save the output of a CMS QUERY DISK
command in a file named SPACE DATA A. Using COMMAND, you would enter:
pipe command QUERY DISK | > space data a

QUERY DISK is executed without the search for execs or CP commands.

CP Stage
To put the response from a CP command in a pipeline, use the CP host command
interface. The CP stage passes the specified string directly to CP:
pipe cp query users | > users data a

The CP stage executes the CP QUERY USERS command and writes the response
to its output stream. The > stage puts the data in the file USERS DATA A.

Before the CP stage passes a command to CP, it examines the first word of the
command. If the first word contains lowercase letters, the CP stage translates the
entire command to uppercase, because CP expects command names and most
options in uppercase. If you want the CP stage to pass a command to CP without
translating it, write the first word of the command in uppercase.

For example, suppose you want to send a message to user BILL, but you want the
message text to be sent as-is:
pipe cp MSG BILL Is the product name ChocoMilk or Chocomilk?

Putting VM Command Results in REXX Variables
REXX programmers can use the PIPE command to put CP and CMS command
responses directly into stemmed arrays, as shown in Figure 101 on page 55:

Host Command Interfaces

54 z/VM: CMS Pipelines User’s Guide

The list of files is assigned to the fname. stem variable. The variable fname.0
contains the number of lines the STEM stage reads from its input stream. Note that
PIPE is a CMS command, so it should be enclosed by single quotation marks.
(More about using PIPE in execs is described later in Chapter 4, “Device Drivers,”
on page 59.)

Executing Pipeline Records as Commands
The CP, CMS, and COMMAND host command interfaces read input from their input
stream as long as they are not the first stage in a pipeline. CP passes its input
records to CP for execution. CMS and COMMAND pass their input records to CMS
for execution. When the commands to be run are in the input streams, you do not
need to specify operands on these stages. If you specify an operand, the command
specified as an operand is run before the commands read from the input stream.

Figure 102 shows an example in which the CMS stage executes two commands.
One of the commands is specified as an operand (tell * This one first.). It is
executed first. The other command is issued in the pipeline by the LITERAL stage.

Using Subcommand Environments (SUBCOM)
There can be several subcommand environments active in your session. The
XEDIT system editor, for example, sets up a subcommand environment named
XEDIT to processes XEDIT subcommands from macros. The CMS subcommand
environment processes CMS commands with the full command resolution, as if the
command had been typed on your terminal. User-written applications may set up
their own subcommand environments. To send commands to these environments
from a pipeline, use the SUBCOM stage.

SUBCOM requires at least one argument: the name of the environment you want to
send commands to. Following that, you can specify the command to be passed. If
there are records in the pipeline, SUBCOM sends them to the specified
environment (just as the CMS stage does). SUBCOM also copies each record in its
primary input stream to its primary output stream.

SUBCOM does not intercept the output of the commands it sends to subcommand
environments. If, for example, you want to run a CMS command without
intercepting the output, use SUBCOM CMS command-string.

/* Put command response into a stemmed array. */
'pipe cms listfile * script a', /* Execute a LISTFILE */

'| stem fname.' /* Put results in FNAME. */
if rc=0 then

do i=1 to fname.0
/* Other file processing. */
end

Figure 101. STEMMED ARRAY: Placing Host Command Responses in

pipe literal tell * This is second. | cms tell * This one first.
09:50:03 * MSG FROM YOURID : This one first.
09:50:03 * MSG FROM YOURID : This is second.
Ready;

Figure 102. Executing Multiple Commands

Host Command Interfaces

Chapter 3. Host Command Interfaces 55

The XEDIT macro in Figure 103 writes information about a file as an XEDIT
message. To do this without a pipeline you would need to stack the result of a CMS
LISTFILE command, read it, and generate an XEDIT message.

This example also shows a technique for being prepared to display an error
message if a stage produces no output. Here, LITERAL generates the error
message and inserts it in front of the line generated by the STATE stage, if any.
TAKE LAST then selects the response if there is one; only when STATE writes
nothing (the file is not found) is the literal line retained.

Connecting with CP System Services
Use stages that connect with CP system services to respond to messages received
by the pipeline, or to write records received during the connection.

STARMONITOR Stage
The STARMONITOR stage lets you write lines from the CP *MONITOR system
service. Before using STARMONITOR, you need to understand CP’s system
services. It is described in the z/VM: CP Programming Services book. It is also
necessary to:

v Use the IUCV directory control statement to authorize yourself to connect to the
*MONITOR system service,

v Attach the monitor segment to the virtual machine using the CMS SEGMENT
LOAD command, and

v Enable the monitor domains you wish to process using the CP MONITOR
command

before issuing STARMONITOR.

STARMONITOR requires you to name the monitor shared segment to be used by
specifying a segment operand. Make sure you use the same segment name that
you specified on the SEGMENT LOAD command which attached the monitor
segment to the virtual machine. STARMONITOR, by default, will connect to *Monitor
in shared mode, and will collect event and sample data. To connect to *Monitor in
shared mode, and to collect only event data, specify EVENTS as the operand to
STARMONITOR. To connect to *Monitor in shared mode, and to collect only sample
data, specify SAMPLES as the operand to STARMONITOR. To connect to *Monitor
with exclusive use of the specified monitor segment, specify EXCLUSIVE as the

/* State a file and show the result as an XEDIT message */
parse upper arg file
if words(file) < 3 then do

say 'Must specify file name, file type, and file mode'
exit 1

end

address command
'PIPE',

'state' file, /* Look for file */
'| specs /msg / 1 1-* next', /* Build command */
'| literal emsg File' file 'not found', /* Prefix a not found msg */
'| take last', /* Take the last msg */
'| subcom xedit' /* Execute it */

exit rc

Figure 103. STATE XEDIT: Writing Information about a File

Host Command Interfaces

56 z/VM: CMS Pipelines User’s Guide

operand to STARMONITOR. To suppress records from one or more of the monitor
record domains, specify SUPPRESS hex as the operand to STARMONITOR.
However, enabling the monitor domains selectively will give you a better
performance time than using the SUPPRESS operand.

The STARMONITOR stage writes lines it receives from the CP *MONITOR system
service as logical records to its primary output stream. Each record begins with the
20-byte prefix defined for monitor records in the MRRECHDR structure. For more
information about the structure of monitor records, see the MONITOR LIST1403 file
containing the monitor records that was loaded onto your base CP object disk (194)
at the time z/VM was installed on your system.

You can use the STARMONITOR stage in a REXX exec to create a log file of the
virtual disks in storage created on a system. To accomplish this, the exec collects a
subset of the Address Space Created monitor records (domain 3 record 12) and
writes the user ID and virtual device number (vdev) of the created virtual disk in
storage to an output file. Refer to the example exec that creates this log file in the
z/VM: CMS Pipelines Reference.

Host Command Interfaces

Chapter 3. Host Command Interfaces 57

58 z/VM: CMS Pipelines User’s Guide

Chapter 4. Device Drivers

In CMS Pipelines, device drivers are stages that move data between your pipeline
and the outside world. In this case, the outside world consists of devices (virtual
and real) and other system resources (such as files maintained in storage by
XEDIT).

Most device drivers can be anywhere in the pipeline. Some must be first, however,
and others cannot be first. Be careful when using device drivers that can be placed
anywhere in a pipeline (such as, XEDIT, STEM, VAR, and FILEFAST). When first in
a pipeline, these device drivers read from the system resource. When used
anywhere else in the pipeline, they write to the system resource, often replacing
existing data. You can overwrite or destroy data when you misplace these device
drivers.

This chapter describes some of CMS Pipeline’s device drivers. All of the device
drivers are documented in the z/VM: CMS Pipelines Reference.

Working with the Terminal (CONSOLE)
The CONSOLE stage reads from the terminal and writes to it. CONSOLE senses
where it is in the pipeline. When it is the first stage, it reads from the terminal and
writes the records to its primary output stream. When it is in any other stage, it
reads records from its primary input stream and writes them to the terminal.
CONSOLE also copies the records it reads or writes to the following stage.

Many other device drivers work the same way. That is, they read from or write to
the pipeline depending on their position in the pipeline. When device drivers write to
a host interface, they always write their output records to their output streams as
well, so that the records can be passed to the next stage.

In Figure 104, CONSOLE is not the first stage, so it writes to the terminal.

CONSOLE also writes its input records to the following stage. In the example in
Figure 105, the string Hello out there is displayed on the terminal and is also
written to the file CONSOLE LOG A.

pipe literal Hello out there | console
Hello out there
Ready;

Figure 104. CONSOLE Stage Example 1

pipe literal Hello out there | console | > console log a
Hello out there
Ready;

Figure 105. CONSOLE Stage Example 2

© Copyright IBM Corp. 1991, 2009 59

When CONSOLE is the first stage, it reads lines from the console and writes them
to its output stream. Every time you type data on the CMS command line and press
the Enter key, CONSOLE writes that record to its output stream. To end CONSOLE,
press Enter without typing anything.

Figure 106 shows an example in which the records entered at the terminal are
written to the file TYPETO FILE A. The blank line after to a file. is a null line the
user entered to end the CONSOLE stage. In other words, the user pressed the
Enter key without first typing anything.

Writing Literal Strings to a Pipeline (LITERAL)
The LITERAL stage is not like the CONSOLE device driver. It doesn’t work with a
real device. Instead, it lets you write a string to the pipeline. The string written is the
string you specify as the operand, including any leading or trailing blanks.

In Figure 107, LITERAL writes the string Hello, World. to its primary output stream.
CONSOLE, which is the next stage, displays the string on your terminal.

After writing the operand to its primary output stream, LITERAL copies any records
in its primary input stream to its primary output stream. Therefore, you can use
LITERAL to put a header on your output.

Figure 108 shows how to combine CMS and LITERAL stages to write a heading for
the output of a CMS command.

The CMS stage writes the response from the QUERY ACCESSED command to its
primary output stream a record at a time. Before LITERAL processes its input, it

pipe console | > typeto file a
You can use console to type
to a file.

Ready;

Figure 106. CONSOLE Stage Example: Typing to a File

pipe literal Hello, World.|console
Hello, World.
Ready;

Figure 107. LITERAL Stage Example 1

pipe cms query accessed | literal My accessed disks and directories: | console
My accessed disks and directories:
Mode Stat Files Vdev Label/Directory
A R/W 47 191 BAR191
C R/O 1152 19C ESA19C
G R/O 4729 19F NUGOOD
S R/O 351 190 CMS11
Y/S R/O 378 19E 19ESP4
Ready;

Figure 108. CMS, LITERAL, and CONSOLE Stages Example

Device Drivers

60 z/VM: CMS Pipelines User’s Guide

writes its operand to its primary output stream. In this example, LITERAL writes My
accessed disks and directories: to its primary output stream. Then it copies its
primary input stream (the results of the QUERY ACCESSED command) to its
primary output stream. The CONSOLE stage writes the records in its primary input
stream (the header followed by the command results) to the screen.

Note that the end of the literal string is the last character before the stage separator
(|). In Figure 109 the output on the display has two trailing blank characters (though
you normally do not see them on the screen). This is not significant in this case but
it can be important when records are modified in the pipeline. The first space after
LITERAL is not part of the literal string. Any additional spaces, however, are included
at the left of the record written.

In Figure 109, the second LITERAL stage writes its string (Hello...) to its output
stream before copying the records from its input stream (...world.). Because
LITERAL works this way, header records are often added to data near the end of
the pipeline, not near the beginning as one might expect.

Working with CMS Files
CMS Pipelines provides many stages for working with CMS files. They are:

v < (read file)—reads a CMS file and writes the records to its output stream.

v > (write file)—reads records from its input stream and writes them to a file
(replacing any existing file).

v >> (append file)—reads records from its input stream and writes them to a file
(appending any existing file).

v FILEFAST—when used as the first stage, reads a CMS file and writes the
records to its primary output stream. Otherwise, FILEFAST reads records from its
primary input stream and writes them to a file (appending any existing file) and to
its primary output stream, if connected.

v FILESLOW—when used as the first stage, reads a CMS file beginning at a
specified record number and writes the records to its primary output stream.
Otherwise, FILESLOW reads records from its primary input stream and writes
them to a file (appending any existing file) starting at a specified record number.
FILESLOW also writes the records to its primary output stream, if connected.

v FILEBACK—reads a file backward (that is, from its last record to its first) and
writes those records to its output stream.

v FILERAND—reads specific records or a range of records from a file and writes
those records to its output stream.

v FILEUPDATE—replaces specific file records.

This chapter describes <, >, >>, and FILEFAST. The other stages are described in
the z/VM: CMS Pipelines Reference.

CMS Pipelines works with files that reside on minidisks or in SFS directories. The
stages need file mode letters, so the minidisk or directory must be accessed.

pipe literal ... world.|literal Hello... | console
Hello...
... world.
Ready;

Figure 109. LITERAL Stage Example 2

Device Drivers

Chapter 4. Device Drivers 61

The < Stage
The < (read file) stage reads a CMS file and writes the records to its output stream.
The < stage must be used as the first stage of a pipeline. Specify a file identifier as
the operand.

Figure 110 reads a file named DAY LIST and writes the records to its output stream.
The CONSOLE stage displays the records.

When using the < stage, do not forget to leave a blank between < and the file
identifier.

The file mode is optional for the < stage. If the file mode is omitted, the < stage
looks for the file in virtual storage (as loaded by the EXECLOAD command). If the
file is not there, < looks for it on your accessed disks or directories using the usual
CMS search order.

The < stage reads both F-format and V-format files.

The > Stage
The > (write file) stage reads records from its input stream and writes those records
to a file. If the file exists, it is replaced. If the file does not exist, it is created.
Specify the file identifier as an operand—you must specify a file mode. A > stage
cannot be the first stage of a pipeline.

Like the CONSOLE stage, the > stage copies its input stream to its output stream
for use by any following stage. All output device drivers work this way. In fact, both
the following examples yield the same results:
pipe cms query disk | > space data a | console

pipe cms query disk | console | > space data a

The order of the > and CONSOLE stages is switched. CONSOLE displays the
QUERY DISK response on your terminal, but also writes the records to its output
stream. The input stream of the > stage is connected to the output stream of
CONSOLE. So, the > stage reads the response records and writes them to the
SPACE DATA A file.

In Figure 111 on page 63, the < stage reads the file DAY LIST, writing the records to
its output stream. Then the > stage reads those records from its input stream and
writes them to the file NEWDAY LIST A.

pipe < day list | console
Morose Monday
Tranquil Tuesday
Wonderful Wednesday
Tumultuous Thursday
Fabulous Friday
Spectacular Saturday
Sedate Sunday
Ready;

Figure 110. < Stage Example

Device Drivers

62 z/VM: CMS Pipelines User’s Guide

By default, the > stage creates a V-format file. (You can specify the operand
VARIABLE after the file identifier.) Use the FIXED operand to create a file having
F-format records. Type the desired record length after FIXED, as shown in this
example:
pipe literal Peppers | pad 80 | chop 80 | > garden list a fixed 80

The FIXED 80 operand causes the file GARDEN LIST A to be created as an
F-format file with a record length of 80. When FIXED is used, all input records to
the > stage must be the same length (that is, the length specified after the FIXED
operand). Any record that is longer or shorter causes an error.

You can omit the record length from FIXED. In this case, the length of the first input
record determines the record length. If all the records do not have the same length,
an error results.

To force records to have a specific length, use the PAD and CHOP filters as shown
in the preceding example. PAD ensures that the record is at least 80 bytes long;
CHOP truncates any records longer than 80 bytes. CHOP is superfluous in the
above example because you know the record Peppers is less than 80 bytes long.

The >> Stage
The >> (append file) stage reads records from its input stream and writes those
records to a file. If the file already exists, the >> stage appends the records to the
file. If the file does not exist, the >> stage creates it. Specify the file identifier as an
operand—you must specify a file mode. A >> stage cannot be the first stage of a
pipeline.

The following exec fragment tracks the use of an exec. It writes the name of the
exec, the date, and the time to a log file:
...
/* Append a record to the log file */
'pipe',

'literal MYEXEC run on' date() time(),
'| >> myexec log a variable'...

When the >> stage creates a file, it creates a V-format file by default. You can omit
keyword VARIABLE from the example above and get the same result. To create an
F-format file, specify the FIXED operand just as you do for the > stage. If you use
the FIXED operand, make sure all of the records to be written are the same length.

If you are appending a file that has fixed-length records, the records you append
must be the same length as those in the file. Use CHOP and PAD stages to fix the
lengths of pipeline records. (See page 63 for examples using the FIXED operand.)

The FILEFAST Stage
The FILEFAST stage performs different functions depending on its position in the
pipeline. When used as the first stage, it performs a function similar to the < stage.
That is, it reads a file and writes the records to its output stream. Figure 112 on
page 64

pipe < day list | > newday list a
Ready;

Figure 111. > Stage Example

Device Drivers

Chapter 4. Device Drivers 63

page 64 shows an example.

There are some differences between the FILEFAST stage and the < stage, as
follows:

v The FILEFAST stage will not display an error message if the file to be read does
not exist. The < stage does display an error message.

v The FILEFAST stage does not look in virtual storage for the file. It looks only
through the CMS search order. In contrast, the < stage does look for a file
loaded by EXECLOAD before looking for it in the CMS search order, if the file
mode is omitted.

When FILEFAST is not the first stage, its function is identical with that of the >>
stage.

Unless you want to exploit the differences outlined above, it is recommended that
you use < and >> instead of FILEFAST.

Getting Facts about Files (STATE, STATEW)
To get facts about several files, use the CMS stage to run a LISTFILE command
(see Figure 28 on page 25 for an example). Use the STATE or STATEW stages
when you are interested in a single file or the first file with a particular name and
type.

The STATE and STATEW device drivers get information about a file and write a line
in the same format as the response from a CMS LISTFILE command with the
DATE option. Use STATE or STATEW instead of CMS LISTFILE when you wish to
find the first file of a certain type, or obtain the date of a file or a list of files.

STATE looks on all accessed file modes, while STATEW looks on only file modes
that are accessed read/write.

The format of the input lines (and the operand string, if present) is three words
separated by blanks (or tokens): a file name, a file type, and a file mode. Use an
asterisk (*) for the file name or the file type (or both) to find the first occurrence of a
certain type of file. This asterisk, or wildcard character, is supported by both the
CMS STATE and CMS STATEW commands, but will give you a different result than
if you used it on the CMS LISTFILE command. STATE and STATEW return
information for only the first file that matches the argument, not all files.

STATE and STATEW work like the CMS and CP stages; they process any operand
first, then process the records from their input streams. STATE and STATEW expect
the records to contain file identifiers. One file identifier should be on each input

pipe filefast day list | console
Morose Monday
Tranquil Tuesday
Wonderful Wednesday
Tumultuous Thursday
Fabulous Friday
Spectacular Saturday
Sedate Sunday
Ready;

Figure 112. FILEFAST Stage Example

Device Drivers

64 z/VM: CMS Pipelines User’s Guide

record. Figure 113 shows an example.

In execs, use STATE and VAR to put file information into stem variables that can be
used in the body of the exec. (See Figure 114.)

STATE writes one output record for each file that it finds. It does not write an output
record for files it cannot find. In contrast, the CMS command LISTFILE writes a line
for each file matching the argument pattern; it can write several lines for a single
pattern.

Packing and Unpacking Files
CMS Pipelines lets you read CMS files that are packed. It also lets you create
packed files. To learn how, refer to “Packed Format (PACK, UNPACK)” on page
189.

Accessing Exec Variables
Several device drivers read and write variables in a REXX or EXEC 2 program. You
can read and write a single variable or a stemmed array.

STEM Stage
STEM lets a pipeline use stem variables in REXX programs. When first in a
pipeline, STEM reads the contents of variables and writes them to its primary output
stream. In other positions it reads records from its primary input stream and writes
them to REXX stem variables, as well as to its primary output stream.

The argument to STEM is the part of the stemmed variable up to and including the
last period (.) in the variable name you wish to reference. The name must include
the period, for instance:
ARRAY.NAME.

pipe literal test * * | state profile * * | console
PROFILE EXEC A1 V 72 65 2 5/14/91 15:42:49
TEST D A1 V 80 40 2 8/29/90 13:47:15
Ready;

Figure 113. STATE Stage Example

/* State subroutine */
state: procedure
parse arg fn ft .

'pipe state' fn ft '*', /* Check for existence */
'| specs 1-22 1', /* Put file ID and record format in output record */

'28.7 next ', /* Put the record length next */
'37-44 next ', /* Put the number of records next */
'56-* next', /* Put date and time next */

'| var state' /* Put it in variable STATE */
If RC/=0

Then call err RC, 'File' fn ft '* not found'
return right(state, 80)

Figure 114. STATE and VAR Stages Example

Device Drivers

Chapter 4. Device Drivers 65

When STEM is the first stage, it uses the variable stem.0 to determine how many
records to write to its output stream. In Figure 115, STEM looks at inval.0 to
determine how many variables to read. Because inval.0 is set to 3, STEM reads
the variables inval.1, inval.2, and inval.3. It writes the contents of these
variables to its output stream (one record per variable). CONSOLE displays the
records.

The following example show the results of executing STEMFRST. Because inval.0
is 3, not 4, green is not displayed on the terminal.
stemfrst
red
white
blue
Ready;

When STEM is not first, it reads its input records and writes them to the specified
stem variable. STEM also sets stem.0 to the number of variables set. In Figure 116,
for example, the variable outval.0 is set to 3.

The following example show the results of executing STEMMID. STEM writes the
three records in its input stream to the stem variable outval..
stemmid
OUTVAL.0 = 3
OUTVAL.1 = red
OUTVAL.2 = white
OUTVAL.3 = blue
Ready;

Often you will use STEM when you want to use the REXX language to do some
processing that is not easily done in CMS Pipelines. You use STEM to temporarily
leave CMS Pipelines. In Figure 117 on page 67, for example, stages read a file and

/* STEMFRST EXEC -- STEM as the first stage */
inval.0 = 3
inval.1 = 'red'
inval.2 = 'white'
inval.3 = 'blue'
inval.4 = 'green'
'pipe',

'stem inval.',
'| console'

exit rc

Figure 115. STEMFRST EXEC: Using STEM Stage to Read REXX Variables

/* STEMMID EXEC -- STEM in a stage other than the first */
'pipe',

'literal blue',
'| literal white',
'| literal red',
'| stem outval.'

do i=0 to outval.0
say 'OUTVAL.'i "=" outval.i

end
exit rc

Figure 116. STEMMID EXEC: Using STEM Stage to Write REXX Variables

Device Drivers

66 z/VM: CMS Pipelines User’s Guide

preprocess the data (using < and LOCATE). STEM puts the preprocessed records
in a stemmed variable so that they can be counted. If more than 20 records are
counted, STEM is used again to gather the records, which are then written to a file.

Note that REXX determines how to end CMS Pipelines processing.

By using STEM, you can take advantage of the strengths of both CMS Pipelines
and REXX. In a single exec, you can switch between CMS Pipelines and REXX as
needed, using whatever is most effective for solving the problem at hand.

Let’s take another example that is somewhat less contrived. Figure 118 shows an
exec that counts the number of files on all accessed minidisks. The response to
QUERY DISK is processed to extract the number of files on each minidisk and
store these numbers in variables num_files.1, num_files.2, and so on.
num_files.0 is set to the number of the last line stored; it is set to zero when there
is no input to STEM.

Our final STEM example is in Figure 119 on page 68. The exec in the example
searches for the last available disk mode letter (Z, X, ...).

/* Find 'the the' */
'pipe',

'< mybook script', /* Read a file */
'| locate /the the/', /* Locate records with 'the the' */
'| stem line.' /* Put records in a stem variable */

if line.0 > 20 then /* Now let's use REXX for a while */
'pipe', /* More than 20 errors... */

'stem line.', /* Get variables */
'| > error file a' /* Write to file */

else
'pipe', /* Less than 20 errors... */

'stem line.', /* Get variables */
'| console' /* Display them */

Figure 117. STEM Stage Example: Using REXX with CMS Pipelines

/* COUNTFIL EXEC -- Count the files on all accessed minidisks */
'pipe',

'command QUERY DISK', /* Issue command */
'| drop 1', /* Drop title */
'| specs 37.8 1', /* Take number of files */
'| stem num_files.' /* Set variable */

total_files = 0
do i = 1 to num_files.0

total_files = total_files + num_files.i
end
say 'You have' total_files 'files across your',

num_files.0 'minidisks.'

Figure 118. COUNTFIL EXEC: Using STEM Stage

Device Drivers

Chapter 4. Device Drivers 67

The pipeline queries the accessed disks, drops the header line and selects the
mode letter from column 13. Then it puts all records together into a single record.

So STEM gets one record which it assigns to the variable modes.1. It also sets
modes.0 to one so you know how many stemmed variables were set (like the XEDIT
EXTRACT subcommand).

The rest of the exec fragment shows how to find the first mode that is not in the list
of accessed modes and how to obtain that mode. The list of mode letters is
reversed to make them appear in the order you wish to look for a letter. As used
here, the REXX function VERIFY returns the position of the first character in the
first argument that is not in the second one (or zero if all characters of the first
argument are present in the second one). Because the second argument is the list
of accessed mode letters, and the first argument is the list of all possible modes in
reverse order, you get the index to the last mode letter that is not accessed, or zero
if all 26 disks are accessed.

Even though only one pipeline record is being saved in the example, STEM is used
instead of VAR. VAR drops the REXX variable if there isn’t a record in the input
stream, but STEM does not. To avoid the risk of having the variable dropped, STEM
is used.

VAR Stage
When used first in a pipeline, VAR reads the value of a single REXX variable and
writes it to its output stream. When used elsewhere, VAR reads its first input record
and writes it to the specified exec variable. VAR also copies its input stream to its
output stream (including the first record.)

When VAR is not first in the pipeline, it drops the variable if it gets no input. (When
a REXX variable is dropped, it becomes unassigned—it is restored to its original
uninitialized state.)

DISKSPAC EXEC (Figure 120 on page 69) shows the use of VAR. DISKSPAC
displays the percentage of minidisk space in use for a given file mode letter. When
entered for a file mode associated with an SFS directory, DISKSPAC displays a
message. (The concept of percentage in-use does not apply to a single SFS
directory.)

/* FINDFM EXEC -- Find the last available mode */
'pipe',

'command QUERY DISK',
'| drop 1',
'| specs 13.1 1.2',
'| join *',
'| stem modes.'

allmodes='ZYXWVUTSRQPONMLKJIHGFEDCBA'
p=verify(allmodes, modes.1)
if p=0

Then call err 36, 'No available mode for access'

mode=substr(allmodes,p,1)
say 'The last available mode is 'substr(allmodes,p,1)

Figure 119. FINDFM EXEC: Using STEM Stage

Device Drivers

68 z/VM: CMS Pipelines User’s Guide

In the DISKSPAC EXEC, the stages of a PIPE command issue a QUERY DISK
command, select the data record from the response, and write that data record to
the variable diskspace. Regular REXX instructions parse the response and display
the appropriate message.

REXX interprets the entire PIPE command before executing it. If you use a variable
in an expression in the PIPE command, REXX resolves the variable before
executing the PIPE command. Therefore, if you change the value of the variable in
the PIPE command, the value is changed after the PIPE command is interpreted.
The following example fails because fid is null at the time that REXX substitutes
the variables in the pipeline.
/* Exec fails because FID is null */
fid=''
'pipe',

'literal MYFILE DATA A', /* Put the file ID in the pipeline */
'| var fid', /* Assign it to variable FID */
'| drop 1', /* Drop the record */
'| append <' fid, /* Read the file (FAILS) */
'| console'

Working from XEDIT
CMS Pipelines provides device drivers that work with XEDIT. The XMSG stage
issues XEDIT messages. The XEDIT stage accesses XEDIT files. XEDIT must
already be running before you can use the XMSG or XEDIT device drivers. (You
cannot use the CMS stage to execute the CMS XEDIT command and then use the
XMSG or XEDIT device drivers later in the pipeline.)

Issuing XEDIT Messages (XMSG)
The XMSG stage issues XEDIT messages. To try it, edit a file and enter a PIPE
command from the XEDIT command line.
====> pipe literal Hello XEDIT user. | xmsg

The string Hello XEDIT user. should be displayed as an XEDIT message.

/* DISKSPAC EXEC -- Display the percentage of in-use disk space */
signal on novalue
parse arg fm
if fm='' then fm='A' /* No file mode? Use A */

'pipe',
'cms query disk' fm, /* Issue QUERY DISK */
'| drop 1', /* Drop the title line */
'| specs 57-58', /* Get the value in cols 57 & 58 */
'| var diskspace' /* Put data line in VAR */

if datatype(diskspace) ¬= 'NUM' /* Check if data is a number */
then say 'SFS Directory' /* None for SFS directory */
else say diskspace /* Okay, display it */

exit rc

novalue:
say 'File mode not accessed'
exit

Figure 120. DISKSPAC EXEC: Using VAR Stage

Device Drivers

Chapter 4. Device Drivers 69

Accessing XEDIT Files (XEDIT)
The XEDIT stage reads lines from files in the active XEDIT file ring and write lines
to them. XEDIT must already be running before you can do this. The operands file
name, file type, and file mode are optional to identify the file you want to access.
XEDIT reads from or writes to the current file if you do not specify the file.

Reading from XEDIT
The XEDIT device driver reads from the file when it is the first stage in the pipeline.
Reading starts at the current line and respects the scope and range settings. You
always get the complete line irrespective of the verify setting. The current line
pointer is set after the last line read, or at the end of the file if reading continues to
end-of-file. (Reading stops before end-of-file if, for instance, a TAKE filter is put after
XEDIT.)

Try this example. While editing a file with more than nine lines, enter the following
command on the XEDIT command line.
====> pipe xedit | take 9 | console

You should see nine lines of the current file displayed on the console in line mode
(or in the CMS output window).

You must put the current line pointer at the top of the file to be sure you read the
entire file.

If the current line is at the top of the file, you can count the number of lines in your
XEDIT file using:
====> pipe xedit | count lines | xmsg

Writing to XEDIT
You can also write to the copy of the file XEDIT holds in storage, but be careful not
to overwrite lines you wish to keep. XEDIT writes the line at the current line pointer,
advancing the pointer after each record is written. Records are added to the file
when the current line pointer is after the last line. You cannot insert lines between
already existing lines with the XEDIT stage (although you can use SUBCOM XEDIT
to issue the XEDIT INPUT subcommand to insert lines).

Another thing to consider is the record length. If the file is F-format, the records
written must have the same length as the record length of the file; they are not
padded or truncated automatically. For V-format files you have more leeway. Lines
longer than the truncation column are processed according to the spill setting;
records are added when the spill function is activated. Records longer than the file’s
truncation column are truncated without a diagnostic message if SPILL is off.

If you start with a new file (no records in it) then everything the XEDIT stage writes
is added to the end of the empty file. Note that the file must be in the XEDIT ring
before you start writing to it. Use the XEDIT subcommand of XEDIT (not the XEDIT
stage of CMS Pipelines) to create a file. If you want to be sure the file is empty
when you start, use the name of a file that does not exist.

It is a good idea to code the file name, file type, and file mode as XEDIT stage
operands so you are sure that data is added to the correct file. This is particularly
important in XEDIT macros when you do not know which files are in the ring.

Device Drivers

70 z/VM: CMS Pipelines User’s Guide

Figure 121 shows a simple XEDIT macro named TRAILER. It adds a record to the
end of the file being edited.

Figure 122 shows another example. The example, SNIP XEDIT, copies lines from
the file being edited to the end of a file named SNIP SCRIPT. After SNIP XEDIT
ends, the file SNIP SCRIPT is the active editing session. To keep the example
simple, we assume the files are V-format and we do not check for possible
truncation (see preceding text).

Combining Records from Device Drivers
In this section we’ll be discussing two device drivers: APPEND and PREFACE.
These device drivers do not interact with a real device. Instead, they let you run
other device drivers.

This may not seem very useful until you consider that only one device driver can be
first in a pipeline. If you want another device driver to behave as it does when it is
the first stage, use APPEND or PREFACE.

APPEND Stage
APPEND copies all records in its primary input stream to its primary output stream.
Then APPEND runs a stage or subroutine pipeline specified as an operand, writing
the resultant records to its primary output stream. Thus, the APPEND stage
appends the output of a stage or subroutine pipeline to the records that are already
in the pipeline.

The stage that you specify as an APPEND operand can be any device driver or
host command interface that can be first in a pipeline. In Figure 123 on page 72,
the output of a CMS LISTFILE command is added to the pipeline after the output of
CMS QUERY DISK.

/* TRAILER XEDIT -- Put trailer in file. */
'command locate *' /* Go to the bottom of the file */
'pipe',

'literal .* File updated by' userid() 'on' date(),
'| xedit'

exit rc

Figure 121. TRAILER XEDIT: Putting a Trailer Record in a New File

/* SNIP XEDIT -- Append lines to SNIP SCRIPT */
parse arg num . /* Read number of lines */
if num='' then num=1 /* Use 1 if nothing is specified */
'extract /fname/ftype/fmode' /* Get the ID of the file */
'command xedit snip script a' /* Edit SNIP SCRIPT */
'command locate *' /* Go to bottom of file */

'pipe',
'xedit' fname.1 ftype.1 fmode.1, /* Read the original file */
'| take' num, /* Take specified number */
'| xedit snip script a' /* Add records to SNIP */

Figure 122. SNIP XEDIT: Appending Text to Another File

Device Drivers

Chapter 4. Device Drivers 71

Figure 124 shows how to use APPEND to write the contents of two files as a single
file:

The < stage writes the contents of the file FILE1 SCRIPT A to its output stream.
APPEND copies these records from its input stream to its output stream. Then
APPEND runs the second < stage, writing the resultant records to its output stream.
Therefore, the records of FILE1 SCRIPT A precede the records of FILE2 SCRIPT A
in the pipeline. Finally, the > stage reads the records from its input stream and
writes them to BIG SCRIPT A. BIG SCRIPT A contains the records of FILE1
SCRIPT followed by those of FILE2 SCRIPT.

This example shows another way to combine two literals:
pipe literal Hello...|append literal ... world.| console
Hello...
... world.
Ready;

PREFACE Stage
PREFACE runs a stage or subroutine pipeline specified as an operand, writing the
resultant records to its primary output stream. Then it copies all records in its
primary input stream to its primary output steam. Thus, the PREFACE stage
prefaces the records in the pipeline with the output of a stage or subroutine
pipeline.

Like APPEND, the stage that you specify as a PREFACE operand can be any
device driver or host command interface that can be first in a pipeline. For example,
to insert the output of a CMS LISTFILE command before the output of CMS
QUERY DISK:

pipe cms query disk | append cms listfile * script a | console
LABEL VDEV M STAT CYL TYPE BLKSIZE FILES BLKS USED-(%) BLKS LEFT BLK TOTAL
BAR191 191 A R/W 3 3380 4096 78 98-22 352 450
ESA19C 19C C R/O 100 3380 4096 1011 3440-23 11560 15000
NUGOOD 19F G R/O 150 3380 4096 4736 19522-87 2978 22500
CMS11 190 S R/O 86 3380 4096 350 9197-71 3703 12900
19ESP4 19E Y/S R/O 200 3380 4096 832 13531-45 16469 30000
EMPLOYEE SCRIPT A1
LEGUMES SCRIPT A1
LOWER SCRIPT A1
RECORDS SCRIPT A1
SAMPLE SCRIPT A1
SNIP SCRIPT A1
VMLETTER SCRIPT A1
Ready;

Figure 123. APPEND Stage Example

pipe < file1 script a | append < file2 script a | > big script a
Ready;

Figure 124. Appending Two Files

Device Drivers

72 z/VM: CMS Pipelines User’s Guide

One final observation: there is never any need to specify a LITERAL stage as a
PREFACE operand. Specifying the LITERAL stage directly yields the same results.

pipe cms query disk | preface cms listfile * script a | console
EMPLOYEE SCRIPT A1
LEGUMES SCRIPT A1
LOWER SCRIPT A1
RECORDS SCRIPT A1
SAMPLE SCRIPT A1
SNIP SCRIPT A1
VMLETTER SCRIPT A1
LABEL VDEV M STAT CYL TYPE BLKSIZE FILES BLKS USED-(%) BLKS LEFT BLK TOTAL
BAR191 191 A R/W 3 3380 4096 78 98-22 352 450
ESA19C 19C C R/O 100 3380 4096 1011 3440-23 11560 15000
NUGOOD 19F G R/O 150 3380 4096 4736 19522-87 2978 22500
CMS11 190 S R/O 86 3380 4096 350 9197-71 3703 12900
19ESP4 19E Y/S R/O 200 3380 4096 832 13531-45 16469 30000
Ready;

Figure 125. PREFACE Stage Example

Device Drivers

Chapter 4. Device Drivers 73

74 z/VM: CMS Pipelines User’s Guide

Chapter 5. Writing Stages

When you need to do something that can’t be done with built-in stages, it’s time to
write your own stage. While stages that you write can do any function you want,
most of them will filter pipeline data in some way. User-written stages are used in
pipelines the same way that built-in stages are used—their names are specified in
stages. They are indistinguishable from built-in stages.

User-written stages are written in the REXX or Assembler language. In some ways,
writing a stage is easier than writing a regular exec. In regular execs you must write
all the code for the I/O devices. You need to know what system interface works with
the device and how to use that interface in an exec. When writing a stage that
filters data, you don’t have to worry about devices. The stage reads records from its
input stream and writes records to its output stream.

Reading and writing pipeline records insulates your stage from others. Stages do
not call and pass data directly to each other. They work only with pipeline records.
This independence not only makes them easy to write, it makes them easy to
reuse—your stages can be used in any pipeline.

Keep your stages small and simple. They will be easier to write, easier to test, and
less likely to have errors. Moreover, others will be able to use your stages in ways
you haven’t considered.

Note: Keep in mind that a sequence of several built-in stages could run faster than
a user-written stage that performs the same function.

Stage Concepts
Writing a stage is similar to writing any other REXX-language or
Assembler-language program. Your use of the REXX or Assembler language is not
restricted. Specific points about writing stages in the REXX or Assembler language
are described next.

REXX Stages
Stages written in the REXX language can use all REXX keyword instructions and
functions, and you can execute CMS or CP commands from within the stage.

Assembler Stages
Assembler user-written stages provide increased performance over REXX
user-written stages, especially when used to process large amounts of data. You
must write a stage in Assembler if it uses interfaces that are not offered in REXX, or
if it must start at a commit level below -127. CMS Pipelines offers pipeline
Assembler macros that are the building blocks for writing user-written stages in
Assembler. Writing a stage in Assembler is similar to writing a relocatable and
re-entrant Assembler-language program. The pipeline concepts that apply to writing
stages in REXX also apply to writing stages in Assembler.

This chapter contains Programming Interface and
Associated Guidance Information.

© Copyright IBM Corp. 1991, 2009 75

Interaction with CMS Pipelines
The significant difference between stages and other REXX- or Assembler-language
programs is that stages also interact with CMS Pipelines.

Your stage interacts with CMS Pipelines in three ways:

v Upon gaining control from CMS Pipelines, an Assembler user-written stage’s
registers contain information that CMS Pipelines provided about the pipeline.

v By executing pipeline subcommands or pipeline Assembler macros.

v By passing a return code to CMS Pipelines on exit.

Pipeline Subcommands
There are many pipeline subcommands. Several are covered in this chapter:

v READTO—reads a record from an input stream.

v OUTPUT—writes a record to an output stream.

v PEEKTO—looks at a record in an input stream without removing it from the
stream, as READTO does.

v SHORT—copies all remaining records in the input stream directly to the output
stream.

v STAGENUM—returns in variable RC a number indicating the position of your
stage in the pipeline.

v CALLPIPE—runs a subroutine pipeline.

Pipeline subcommands are analogous to XEDIT subcommands. Like XEDIT, the
PIPE command sets up its own subcommand environment, and pipeline
subcommands in the stage interact with CMS Pipelines.

The pipeline subcommands give a return code in variable RC. The return codes are
the only communications you receive from CMS Pipelines, so it is important for your
stages to examine them.

Pipeline subcommands can be run within REXX- or Assembler-user-written stages.
The PIPCMD stage is used to issue CMS Pipelines subcommands within REXX
user-written stages. The Assembler macro PIPCMD can also issue CMS Pipelines
subcommands, but within Assembler user-written stages.

Pipeline Assembler Macros
There are many pipeline Assembler macros. A list of macro names supported by
z/VM and a brief description of their function follows: Macros are found in FPLGPI
MACLIB.

v PIPCMD—issues CMS Pipelines subcommands to control pipelines.

v PIPCOMMT—increases a stage’s commit level or obtains the current aggregate
return code.

v PIPDESC—describes the Assembler stage to run.

v PIPEPVR—declares what contains the address that points to a table of
addresses required by pipeline Assembler macros.

v PIPINPUT—reads a record and removes it from the currently selected input
stream.

v PIPLOCAT—obtains the address and length of the next record in the currently
selected stream without removing the record.

v PIPOUTP—writes a record to the currently selected output stream from a buffer.

Writing Stages

76 z/VM: CMS Pipelines User’s Guide

v PIPSEL—designates the stream specified to be the currently selected stream for
subsequent use by Assembler macros that reference streams.

v PIPSEVER—detaches the connected, currently selected stream from the stage in
the pipeline that issued the PIPSEVER assembler macro.

v PIPSHORT—copies all remaining records in the currently selected input stream
directly to the currently selected output stream.

v PIPSTRNO—returns the stream number of a stream specified by number or
name.

v PIPSTRST—returns status information about the specified stream to determine
whether or not there is input or output data.

Entry Conditions to an Assembler Stage
Before CMS Pipelines calls the Assembler user-written stage, it loads the following
general registers with these initial values:

Register Contents

R0 Address of four fullwords in storage that point to the user-written
stage name, the parameter string, and the name of the next stage
in the pipeline. The fourth fullword consists of zeros.

R1 Address of Work Area

R2 Address of the beginning of the user-written stage’s parameter
string

R3 Length of the user-written stage’s parameter string

R4 Highest numbered stream allowed

R5 Address that points to a table of addresses required by pipeline
Assembler macros to locate entry points into CMS Pipelines

R6 Message Level

R7 0

R8 Number indicating the position of the stage within the pipeline

R9 Address that points to a table of addresses required by pipeline
Assembler macros to locate entry points into CMS Pipelines

R10 Address of PIPDESC macro expansion

R11 0

R12 Address of the entry point defined on the PIPDESC macro

R13 Address of the beginning of the 18 fullword (or greater) save area

R14 Address of instruction to return to when the stage completes
processing

R15 Address of the entry point defined on the PIPDESC macro

These registers provide information about the user-written stage such as its position
in the pipeline and the highest number of streams allowed. The information
provided by register 4 is equivalent to the information obtained from the pipeline
subcommand MAXSTREAM. Similarly, the information provided by register 8 is
equivalent to the information obtained from the pipeline subcommand STAGENUM.

Register 13 must contain a save area.

Writing Stages

Chapter 5. Writing Stages 77

The pipeline Assembler macros give a return code in general register 15. The return
codes are the only communications you receive from CMS Pipelines, so it is
important for your stages to examine them.

Return Code on Exit
When your stage completes processing, it gives a return code to CMS Pipelines. By
default, the return code is zero. To set a return code other than zero in a REXX
user-written stage, specify the desired code on a REXX EXIT instruction (just as
you do in a regular exec). If your stage detects an error, it can finish and report the
error by using a nonzero return code on an EXIT instruction. When an Assembler
macro completes processing, CMS Pipelines loads the return code into Register 15,
then sets the condition code after testing the return code in Register 15.

When an Assembler user-written stage completes processing, CMS Pipelines
expects the return code for the stage to be in Register 15.

CMS Pipelines gathers return codes from all stages, returning only one to CMS. It
selects the return code to pass to CMS as follows:

v If there are negative return codes, CMS Pipelines returns the negative return
code having the highest absolute value. Given return codes -2, -1, and 100, CMS
Pipelines returns -2.

v If there are no negative return codes, CMS Pipelines returns the code having the
highest value. Given return codes 100, 0, and 98, CMS Pipelines returns 100.

The CMS Pipelines Environment
CMS Pipelines checks the syntax of the pipeline you enter, and controls how each
stage in the pipeline is run. The part of CMS Pipelines that performs syntax
checking is called the scanner. The part of CMS Pipelines that controls stage
processing is called the dispatcher. After the scanner parses the PIPE command,
the dispatcher decides which stage to run, and when. The stages are not
necessarily executed in the order that they are written in the PIPE command, and a
stage does not necessarily run from start to finish once it does get control. Instead,
the dispatcher may let part of one stage execute, then part of another, and so on.

How a Pipeline Runs
Let’s see how a pipeline runs by examining the interactions of the dispatcher and
the stages. Suppose you write a stage that reads records from its input stream,
reverses the order of the characters in the records, and writes the changed records
to its output stream. Since we haven’t yet discussed pipeline subcommands in
detail, we’ll use pseudo code to show how it might be written:
do until we get a nonzero return code

Read a record from the input stream (use READTO)
Reverse the characters (use regular REXX functions)
Write the record to the output stream (use OUTPUT)

end

Figure 126 shows REVIT REXX, an implementation of the above pseudo code.

Writing Stages

78 z/VM: CMS Pipelines User’s Guide

The following example shows how to use REVIT:
pipe < test file | console
Test 1
Test 2
Test 3
Ready;
pipe < test file | revit | console
1 tseT
2 tseT
3 tseT
Ready;

As shown above, REVIT processes one record at a time from the V-format file
TEST FILE. Another way to implement REVIT is to use three loops. The first loop
reads all the records in the input stream. The second loop reverses all the records.
The third loop writes all the records to the pipeline. But this is not very efficient
because you must hold all the records in virtual storage.

Remember that your stage may not run from start to finish. Processing a record at
a time takes advantage of the dispatcher. Whenever possible, your stages should
process a record at a time.

The rest of this section describes an execution of a PIPE command that contains
REVIT. Although the description provides insight on how your stages run and how
they interact with the dispatcher, you don’t need to read the description to
successfully write stages. If you do read the rest of this section, remember that it
describes what might happen, not what will happen. The order in which the
dispatcher processes stages is not predictable. Also, for brevity, we’ve simplified
some aspects of how the < and > stages work.

With the above disclaimers in mind, let’s use REVIT in this sample pipeline:
pipe < test data | revit | > reversed data a

To summarize what happens, we’ll be using charts like the one in Figure 127 on
page 80. To read these charts, look at each numbered step in order. The text on
that line summarizes what is happening. The text is underneath the stage that is
performing the action. For example, the first action that occurs is a READTO by
REVIT. The second is a READTO by the > stage, and so on.

/* REVIT REXX -- Copy input stream to output stream */
/* We get control from CMS Pipelines */

signal on error /* Set up error handling */
do forever

'readto in' /* Pipeline subcommand to read a record */
'output' reverse(in) /* Write reversed record */

end
error:
if rc=12 then rc=0 /* RC=12 is a normal condition */
exit rc /* Return to CMS Pipelines */

Figure 126. REVIT REXX: A Simple User-Written Stage

Writing Stages

Chapter 5. Writing Stages 79

When the PIPE command is executed, the dispatcher gets control. The dispatcher
can let any of the three stages run. The choice it makes is unpredictable. For our
example, assume that the dispatcher decides to let REVIT run first.

Referring to the pseudo code and to Figure 126 on page 79, we see that REVIT
executes a READTO pipeline subcommand to read a record from its input stream.
At that point, the dispatcher gets control again. (The dispatcher gets control
whenever a pipeline subcommand is executed.)

Because REVIT is the first stage to run, there isn’t a record immediately available.
(The < stage hasn’t read any file records yet.) So, the dispatcher can’t satisfy the
READTO request. Instead, it must run another stage. It can run either the < stage
or the > stage.

Let’s say that the dispatcher decides to run the > stage. The > stage reads records
from its input stream and writes them to a file. The > stage executes a READTO
pipeline subcommand to read a record from its input stream. (The built-in stages
use the equivalent of pipeline subcommands. In this respect, they are not so
different from user-written stages.)

When the > stage executes the READTO, the dispatcher gets control. Once again,
no record is available. REVIT has not yet written any records to its output stream,
so there is no record for the > stage to read. Now the dispatcher has two stages
waiting for READTOs to finish: REVIT and the > stage. So the only remaining stage
that can run is the < stage. The dispatcher gives it control.

The < stage reads a record from the file TEST DATA and writes the record to its
output stream. To write the record, the < stage uses the OUTPUT pipeline
subcommand. The dispatcher gets control once again.

Now the dispatcher has a record that it can give to REVIT. (The output stream of
the < stage is connected to the input stream of REVIT.) So, the dispatcher decides
to give REVIT control again. Remember that REVIT is still waiting for its first
READTO to end. While it was waiting, two other stages have executed: the > stage
(which is also waiting) and the < stage (which just ran). Now REVIT’s wait is over.
READTO processing puts the record in a REXX variable and REVIT resumes.
REVIT executes an OUTPUT pipeline subcommand to write the record to its output
stream. The characters are reversed by a REXX REVERSE function that is part of
the OUTPUT expression. Again the dispatcher gets control.

Can you guess what happens next? The dispatcher has several alternatives:

< test data | revit | > reversed data a

1. READTO (must wait)
2. . READTO (must wait)
3. Read a file record . .
4. OUTPUT (must wait) . .
5. . Stage resumes .
6. . READTO finishes .
7. . Reverse characters .
8. . OUTPUT (must wait) .

The dispatcher can run the < stage or the > stage next.

Figure 127. Pipeline Execution Example

Writing Stages

80 z/VM: CMS Pipelines User’s Guide

v It can let the < stage run again. The < stage is waiting for its OUTPUT pipeline
subcommand to end.

v It can let the > stage run. The > stage is waiting for its READTO to end. REVIT
has made a record available to satisfy the READTO. So the > stage can be
dispatched.

One alternative the dispatcher does not have is letting REVIT run again. REVIT
cannot run until the > stage runs and reads the record REVIT has just written. Only
then can the dispatcher let REVIT’s OUTPUT pipeline subcommand finish. The
dispatcher does not let an OUTPUT finish until some stage executes a READTO to
read the record.

Because the dispatcher usually has several alternatives when it regains control, the
order of execution is not predictable. And, as we said in the beginning of this
section, you can’t assume that a stage runs from start to finish when it does get
control. The key point is that anytime a stage executes a pipeline subcommand, it
relinquishes control and other stages might execute.

However, the dispatcher does not preempt stages. Once a stage gets control, the
dispatcher regains control only when the stage executes a pipeline subcommand
(or ends). So if your stage contains an endless loop, for example, CMS Pipelines
does not stop it.

Finally, remember that the preceding section was a sample.

How a Pipeline Ends
We’ve seen, conceptually, how a pipeline runs, but how does it end? Let’s revisit
REVIT. Again, we’ll be referring to this PIPE command:
pipe < test data | revit | > reversed data a

All records are read, reversed, and written without error. How might the pipeline
end? A summary chart is in Figure 128.

Eventually the < stage is dispatched to read another record but no records remain
in the file to be read. So, the < stage ends with a 0 return code. When a stage
ends, the dispatcher regains control. Assume REVIT is dispatched next. REVIT
executes a READTO.

REVIT’s input stream is no longer connected—the stage to which it was connected
no longer exists. Therefore, a record cannot be read from the input stream. CMS

< test data | revit | > reversed data a
1. . . .
2. Read file record . .
3. End-of-File so . .
4. Exit 0 . .
5. Stage resumes .
6. READTO returns RC=12 .
7. So Exit 0 .
8. Stage resumes
9. READTO returns RC=12
10. So EXIT 0

The PIPE command ends with a zero return code.

Figure 128. A Pipeline Ending with a Zero Return Code

Writing Stages

Chapter 5. Writing Stages 81

Pipelines communicates this to the stage by giving it a return code of 12. Return
code 12 on any pipeline subcommand indicates that a stream is no longer
connected. In this case, it is the input stream that is not connected (because we
received the return code from READTO).

Upon receiving a return code of 12, REVIT ends processing. Its input stream is no
longer connected, so there is no point in continuing. To end its processing, REVIT
executes a regular REXX EXIT instruction with a zero return code.

A zero return code is warranted because REVIT didn’t detect any errors. A
disconnected stream (RC=12 on any pipeline subcommand) is not an error
condition—it is a normal pipeline occurrence. In general, a user-written stage should
exit with a zero return code if it receives a return code of 12 from a pipeline
subcommand.

Finally, the > stage is dispatched and executes a READTO. It, too, receives a return
code of 12 because its input stream is no longer connected (REVIT no longer
exists). The > stage ends with a 0 return code, and the PIPE command itself ends
with a zero return code.

Let’s take another example, using the same pipeline. Suppose that we are in the
midst of processing. Several records have already been read, reversed, and written
to disk. Everything is running well. Then the > stage is dispatched to write another
record. It detects an error while writing to the file (perhaps the disk is full). The >
stage realizes that it cannot proceed so it ends with a nonzero return code. A
summary chart is in Figure 129.

When the > stage ends, the dispatcher regains control. It stores the return code for
later use in reporting to CMS. Then it goes about the usual business of dispatching
the remaining stages. It does not end the pipeline just because a stage gave a
nonzero return code.

Suppose the dispatcher gives control to REVIT next. When REVIT executes an
OUTPUT pipeline subcommand to write another record, the dispatcher regains
control. REVIT’s output stream is no longer connected—the stage to which it was
connected no longer exists. Consequently, the dispatcher returns control to REVIT,
but passes it a return code of 12.

< test data | revit | > reversed data a
1. . . .
2. . . Stage resumes
3. . . READTO finishes
4. . . Write record to file
5. . . RC<>0, so EXIT RC
6. . Stage resumes
10 . OUTPUT runs and gives
11. . RC=12, so Exit 0
12. Stage resumes
13. OUTPUT runs and gives
14. RC=12, so Exit 0

The PIPE command ends with a nonzero return code.

Figure 129. A Pipeline Ending with a Nonzero Return Code

Writing Stages

82 z/VM: CMS Pipelines User’s Guide

Upon receiving a return code of 12, REVIT ends processing. It can no longer write
to its output stream, so there is no point in continuing. To end its processing, REVIT
executes a regular REXX EXIT instruction with a zero return code.

Now two stages have ended. The > stage gave a nonzero return code to the
dispatcher, while the REVIT stage returned a zero. The dispatcher gives control to
the only remaining stage.

The < stage reads a file record and then executes an OUTPUT pipeline
subcommand. The dispatcher receives control. It knows that REVIT has ended, so
the output stream of the < stage is not connected. It returns control to the < stage,
passing a return code of 12 on the OUTPUT pipeline subcommand.

Upon receiving the return code of 12, the < stage also ends. Its output stream is
disconnected, so it exits with a return code of 0.

Now the dispatcher knows all stages have ended. One of the stages reported a
nonzero return code. The dispatcher returns to CMS, passing back the nonzero
return code.

In summary, a PIPE command ends when all of its stages end. The stages
themselves decide when to end. Because they are dispatched in any order, stages
can end in any order. A stage might decide to end when it:

v Completes its function, or

v Detects an error, or

v Detects that one or more of its streams are disconnected, or

v Detects that there is no more data to read from a device (for device drivers only).

Once a stage ends, the streams that were connected to it become disconnected.
This starts a chain reaction that emanates from the ended stage. Soon return codes
of 12 spread throughout the pipeline as stages end, and eventually the PIPE
command ends.

An Example Stage—HOLD REXX
Figure 130 on page 84 shows a simple stage. It reads records from its input stream
and writes them to its output stream without modifying them. The name of the stage
is HOLD. It is stored in a regular CMS file named HOLD REXX. The name of the
file is also the name of the stage. REXX is the recommended file type, not EXEC.

Note that stage names starting with DMS or FPL are reserved for IBM* use. You
should not give your stages names that start with DMS or FPL. Refer to the chapter
discussing restrictions in the z/VM: CMS Pipelines Reference for a complete list of
restricted stage names.

Writing Stages

Chapter 5. Writing Stages 83

Except for the READTO and OUTPUT commands, HOLD REXX is like any other
exec. READTO and OUTPUT are pipeline subcommands. READTO reads one
record from its input stream into a variable. The argument of READTO is the name
of a variable. In our example, the record is assigned to the REXX variable record.
Notice that the variable name is within the quotation marks (’).

OUTPUT writes a record to the pipeline. Unlike READTO, the argument on
OUTPUT is a string, not the name of the variable. In this example, the contents of
record are written.

The REXX SIGNAL instruction sets up the error handling. It causes REXX to watch
for commands that give nonzero return codes. If a command gives a nonzero return
code, REXX branches to the ERROR label and continues processing.

HOLD REXX loops, reading and writing pipeline data, until a nonzero return code
occurs. Then REXX branches to the ERROR label. We know that we’ll eventually get
a return code of 12 on READTO or OUTPUT. (See “How a Pipeline Ends” on page
81.)

The IF instruction following the error label implements the return code handling
described in “How a Pipeline Ends” on page 81. The IF instruction checks for a
return code of 12. Return code 12 is a normal condition, so the return code of 12 is
changed to a 0. The EXIT instruction ends the filter and passes the return code
back to CMS Pipelines.

Writing Stages in Assembler
This section describes specific rules and pipeline Assembler macros to use when
writing your own stage in Assembler language.

Every stage that is written in Assembler must have storage defined every time the
program is entered to allow the program to be re-entrant. This is set up in the
dummy control section (DSECT). The stage must contain the PIPDESC macro and
the PIPEPVR macro.

Setting up the DSECT
To allow the Assembler program that is your user-written stage to be re-entrant, you
must define storage each time you enter the program. You may define a DSECT to
map storage obtained for variables used in the program. Variables have to be
defined within the storage obtained by the WORKAREA parameter on PIPDESC;
they cannot be defined within the control section (CSECT) of the program. The first
storage definition in the DSECT must be at least an 18 fullword save area. Any

/* HOLD REXX -- Copy input stream to output stream */
/* We get control from CMS Pipelines */

signal on error /* Set up error handling */
do forever

'readto record' /* Pipeline subcommand to read a record */
'output' record /* Pipeline subcommand to write a record */

end
error:
if rc=12 then rc=0 /* RC=12 is a normal condition */
exit rc /* Return to CMS Pipelines */

Figure 130. HOLD REXX: A Simple REXX User-Written Stage

Writing Stages

84 z/VM: CMS Pipelines User’s Guide

variables to be used in the user-written stage should be defined after the save area.
To save storage, define the data constants to be used by the user-written stage in
the program’s CSECT. If you choose to define data constants (DCs) in the work
area, initialize them in the program’s CSECT.

Using the PIPDESC Macro
The PIPDESC macro describes the Assembler program that is to be run as a
user-written stage. It is required in all Assembler user-written stages. PIPDESC
defines such characteristics as the name of the stage, the entry point of the
program, and the size of the work area and a program identifier to be used in the
CMS Pipelines error messages.

For example, the following is a section of code from an Assembler user-written
stage named COPYTWO:
COPYTWO PIPDESC EP=MYPROG,WORKAREA=WRKARLEN,MODULEID=MYPROG
WORKAREA DSECT 0H
SAVEAREA DS 18F
WRKARLEN EQU *-WORKAREA

This macro indicates that the entry point for this program is defined as MYPROG, to
be matched with a MYPROG label in a control section (CSECT) of your program.
The length of the work area is determined by WRKARLEN, and MYPROG is the
program identifier that will be used in CMS Pipelines error messages issued. Note
that the entry point (EP) name and the label on the PIPDESC macro must be
different.

Using the PIPEPVR Macro
The PIPEPVR macro is also required in all Assembler user-written stages.
PIPEPVR declares the address of the table of entry points to CMS Pipelines
routines that are used by the Assembler macros. Before your user-written stage
gets control from CMS Pipelines, the address of this table is loaded into Register 9.
You can subsequently load that address into another available register.

An Example Assembler Stage—COPYCAT
Figure 131 on page 86 shows a simple Assembler stage. It reads records from its
input stream and writes them to its output stream without modifying them. The
name of the stage is COPYCAT. This name is defined as the label for the PIPDESC
statement. The name of the file that contains the COPYCAT source code is
PIPSKEL ASSEMBLE.

Note that stage names starting with DMS or FPL are reserved for IBM* use. You
should not give your stages names that start with DMS or FPL. Refer to the chapter
discussing restrictions in the z/VM: CMS Pipelines Reference for a complete list of
restricted stage names.

Writing Stages

Chapter 5. Writing Stages 85

Let’s examine this program more closely. Except for the CMS Pipelines interfaces,
this program is like any other re-entrant and relocatable Assembler program.

PIPEPVR assigns register 9 as the pointer to the table of entry points to CMS
Pipelines routines that the Assembler macros will use. PIPEPVR must be coded
before any other CMS Pipelines Assembler macros in the CSECT. The first
invocation of PIPLOCAT inspects the first record available on COPYCAT’s primary
input stream. It does not remove that record from the stream. PIPOUTP makes the
record available, without modification, to the stage connected to the primary output
stream of the COPYCAT stage. PIPINPUT removes the record from the primary
input stream. As long as end of file is not reached, the Branch (B) instruction
causes control to be passed to the label LABEL1, where this process begins again
with PIPLOCAT inspecting the next record available on COPYCAT’s primary input
stream. When PIPINPUT receives an end-of-file condition, CMS Pipelines loads a
return code of 12 into register 15. Because register 15 contains a 12, a Branch on
Not Zero (BNZ) instruction causes control to be passed to the label CHECK. This

PIPSKEL START
PIPSKEL AMODE 31
PIPSKEL RMODE ANY
* This is a BASIC outline to begin your Pipelines Assembler stage
* STANDARD ENTRY CODE

REGEQU
STM R14,R12,12(R13) Save caller's registers
BALR R12,0 Load base register
USING *,R12 Tell assembler what to use
ST R13,4(R1) Save caller's save area pointer
ST R1,8(R13) Save own save area pointer
LR R13,R1 Point at my savearea
USING WORKAREA,R13 Map the savearea and workarea

* Processing starts here
PIPEPVR (R9) R9 points to table of addresses
SR R0,R0 Clear R0
SR R1,R1 Clear R1

LABEL1 PIPLOCAT , Peek at a record
BNZ CHECK

LOOP DS 0H
PIPOUTP , Write out the record
BNZ CHECK
PIPINPUT (,0) Consume the record
BNZ CHECK
B LABEL1 If so, continue processing

CHECK DS 0H
C R15,=F'12' Is it end of file?
BNZ FINISH If not leave the RC alone
LA R15,0 Set RC to zero

FINISH DS 0H
* STANDARD EXIT CODE

L R13,SAVEAREA+4 Restore caller's savearea address
L R14,12(R13) Restore original register contents
LM R0,R12,20(R13) Preserving return code in R15
BR R14 Return to caller

* DATA DEFINITIONS
COPYCAT PIPDESC EP=PIPSKEL,WORKAREA=WRKARLEN,MODULEID=PIPSKEL,STREAMS=2
WORKAREA DSECT 0H
SAVEAREA DS 18F
WRKARLEN EQU *-WORKAREA

END

Figure 131. COPYCAT: A Simple Assembler User-Written Stage

Writing Stages

86 z/VM: CMS Pipelines User’s Guide

program does not consider return code 12 to be an error, so 0 is loaded into
register 15 as the return code from the COPYCAT stage.

The data definitions consist of the PIPDESC macro and the work area DSECT. The
PIPDESC macro defines the entry point for this program as PIPSKEL, the length of
the work area as WRKARLEN, and PIPSKEL as the program identifier that will be
used in any CMS Pipelines error messages issued. Note that the entry point name
PIPSKEL is different than the stage name COPYCAT. The first storage definition in
the work area DSECT is the required 18 fullword save area.

Using Your REXX Stage
Use your stages the same way you use built-in stages. For example, to use HOLD
REXX in a pipeline:
pipe < test file | console
Test 1
Test 2
Test 3
Ready;
pipe < test file | hold | console
Test 1
Test 2
Test 3
Ready;

If the name of your stage is the same as the name of a built-in stage, use the
REXX stage to run yours. For example, suppose you write a stage named LOCATE
that is not case sensitive. To use your LOCATE instead of the built-in LOCATE:
pipe < test data | rexx locate /Mixed!/ | console

Using Your Assembler Stage
Before you can use your Assembler stage in a pipeline, you must assemble your
code using the FPLGPI MACLIB, FPLOM MACLIB, and any other MACLIB your
installation requires. Then load the program using the CMS LOAD command. For
example, to use your COPYCAT stage enter commands similar to the following:
VMFHLASM PIPSKEL FPLVM
LOAD PIPSKEL

The level of assembler that you are running must use High Level Assembler
Release 1 (program number 5696-234) or higher.

Once the program is assembled and loaded, you can run the Assembler stage
using the label on the PIPDESC assembler macro as an operand on the LDRTBLS
stage. For example, to run the COPYCAT stage issue a PIPE command similar to
the following:
pipe literal 1 2 3 | split | ldrtbls copycat | console

The resulting terminal output is:
1
2
3
Ready;

Use the LDRTBLS stage to run a compiled REXX- or Assembler-language
user-written stage as a TEXT file in a test environment without disrupting a
MODULE file of the same name running in a filter package in the production

Writing Stages

Chapter 5. Writing Stages 87

environment. This saves you from having to rebuild a filter package of stages
several times. (You can run MODULE files with the NUCEXT stage.) Refer to the
discussion of filter packages in Chapter 12, “Filter Packages,” on page 225, to learn
how to build your user-written stage into a filter package. This provides others with
the capability of running your Assembler user-written stage as part of a filter
package.

Pipeline Subcommands
This section describes common pipeline subcommands. You’ve already seen
READTO and OUTPUT.

READTO Subcommand
READTO reads one record from an input stream. The contents of the record are
placed in a variable whose name you specify as the sole READTO operand. A
record is read and discarded if you execute READTO without an operand.

The variable RC is set with the return code from READTO. Return code zero
means that the function is performed as requested: the variable has a value. Return
code 12 means the input stream is disconnected. A likely cause is that all records
have already been read. When return code 12 is given, the variable is dropped so
you do not inadvertently use obsolete data. Use the REXX SIGNAL ON NOVALUE
instruction to detect dropped variables.

Important: The name of the variable is the argument to READTO. Be sure to put it
inside the quoted string.

OUTPUT Subcommand
OUTPUT writes one record to an output stream. OUTPUT accepts a string as an
argument. It writes the string to the output stream. The first blank following the word
OUTPUT is not considered to be part of the data. Any other leading blanks are
written to the output stream.

The variable RC is set with the return code from OUTPUT. The return code is zero
if the line is read by the following stage. Return code 12 is set if the output stream
is not connected. See “How a Pipeline Ends” on page 81 for more about the
meaning of return code of 12.

PEEKTO Subcommand
Each time you read a record with READTO, a new record is stored in a REXX
variable. Sometimes it is convenient to be able to peek at a record but be able to
read it again later with READTO, or leave it in the input stream for a subroutine
pipeline to read. (Subroutine pipelines are described later in this chapter.) This is
exactly what PEEKTO does. Except for leaving the record in the input stream so it
can be read again, PEEKTO behaves just like READTO.

PEEKTO without a variable name sets the return code to zero when there is a
record available to read. Like READTO, return code 12 means the input stream is
disconnected.

You can process the record peeked at, and then execute READTO to remove the
record from the input stream. PEEKTO is useful in writing stages that do not delay
the record. See “DELAY Stage” on page 155 for more information.

Writing Stages

88 z/VM: CMS Pipelines User’s Guide

SHORT Subcommand
Often your stage processes its input records to end-of-data and then exits.
Sometimes you may wish to copy the remaining pipeline records unmodified to the
output stream. Although you can write a loop like the one in HOLD REXX, there is
an easier way: the SHORT subcommand.

SHORT causes CMS Pipelines to reconnect streams so that they bypass your
stage. Consider the following PIPE command, which uses stages named A, B, and
C. Your stage is stage B.
pipe A | B | C

When your stage (B) runs the SHORT subcommand, CMS Pipelines connects the
output stream of stage A directly to the input stream of stage C. The remaining
records bypass your stage (stage B).

After you execute SHORT, the input and output streams are no longer available to
your stage. Because your stage has not yet ended, however, the dispatcher will still
give control to your stage (eventually). At that time you can, for instance, do
clean-up processing, but you can no longer execute READTO or OUTPUT to
process the stream.

If PEEKTO is the last subcommand issued before the SHORT subcommand, the
record seen is included in the remainder of the input stream which is passed on.

HOLD REXX could be more efficiently written as shown in Figure 132.

This version of HOLD REXX is just as redundant as the one we saw previously, but
faster! In CMS Pipelines, a SHORT is the shortest and fastest path between two
stages because the remaining records bypass the stage doing SHORT.

SHORT is also useful when processing headers. Suppose, for example, you are
processing input that consists of a header and a body. Your filter needs to modify
some lines in the header but not in the body and you want your output to contain
both.

Using READTO and OUTPUT subcommands, read and process your header. When
you detect the body section (or end of the header) you can execute SHORT. That
takes care of copying the body to the output of your filter without modifying the
data.

Figure 133 on page 90 shows an example stage that uses SHORT after processing
a header. In this case, the stage, AUTHOR, changes the header on a SCRIPT file.

The following is an example of a SCRIPT file containing a header:
.********* Start of Header **************************************
.*
.* Security classification: Company Secret
.*
.* Title: CMS Pipelines User's Guide

/* Tight version of HOLD REXX */
'short' /* Copy input to output */
exit RC /* Return */

Figure 132. Modified HOLD REXX: Using SHORT Pipeline Subcommand

Writing Stages

Chapter 5. Writing Stages 89

.*

.* Author: Joe Smith

.*

.* Filename: MYBOOK

.*

.********* End of Header **
:h1.Pipeline Basics
:p.
CMS Pipelines lets you solve big problems by combining small programs.
It lets you do work that would otherwise require someone to
write a new program.
Often you get the result you need
with a single CMS command.
That command is PIPE....

The header consists of SCRIPT comments, which are records beginning with the
string .*. One of the header records contains the keyword Author:. It is this record
we must replace. The end of the header is indicated by a comment containing the
string End of Header. For simplicity, AUTHOR REXX assumes that there is an
author record.

AUTHOR REXX reads records and copies them to its output stream until it finds the
record containing the author. Then it replaces the author record with the new record
and leaves the DO FOREVER loop. Here is an example of how to use AUTHOR in
a PIPE command:
pipe < edition1 script | author | > edition2 script a
Ready;

STAGENUM Subcommand
Occasionally it might be useful for a stage to know its position in the pipeline, also
called the stage number. The first stage has stage number 1, the second stage has
stage number 2, and so on.

/* AUTHOR REXX -- Change the author in the header of a SCRIPT file */
signal on error

authrec='.* Author: Tim A. Shenka' /* Set new author record */
do forever

'readto record' /* Read a pipeline record */
uprec=translate(record) /* Fold it to uppercase */

if pos('AUTHOR:',uprec)>0 & left(uprec,2)='.*' then do
'output' authrec /* Write the new author record */
leave /* Leave DO FOREVER */

end
else 'output' record /* Otherwise, write record to output */

end

'short' /* Copy remaining records to output */

error:
if rc=12 then rc=0
exit rc

Figure 133. AUTHOR REXX: Using SHORT Pipeline Subcommand to Process a Header

Writing Stages

90 z/VM: CMS Pipelines User’s Guide

The stage number is made available to a stage as the return code of the
STAGENUM subcommand. STAGENUM has no parameters; after it is executed, the
variable RC contains the stage number.

Most stages are filters that do the same thing in all positions of the pipeline. This is
true for all of the filters provided with CMS Pipelines. Some device drivers do
different things when they are first in a pipeline. With STAGENUM, your stage can
do different things depending on its position.

Figure 134 shows a stage that adds numbers. It looks at the first blank-delimited
word (or token) on each record. If the word is a valid number, it adds the number to
the REXX variable SUM. Otherwise, it ignores the record. When all input records
have been read, ADD writes a record to the pipeline containing the sum.

ADD uses STAGENUM to detect whether it is being used as the first stage. If it is,
ADD exits with a return code of 24. (ADD doesn’t behave like the built-in filters.)

You can easily modify ADD so it doesn’t care what stage it is. Simply remove the
STAGENUM subcommand and the next line that checks the return code. In this
case, using ADD as the first stage causes it to write a record containing a zero to
the pipeline. (The first time READTO is executed it gives a return code of 12
because there is nothing connected to the input stream of ADD.)

The following example shows two sample PIPE commands that show how to use
ADD:
pipe literal 3 | literal invalid | literal 4 | add | console
7
Ready;
pipe add | console
Ready(00024);

/* ADD REXX -- Add all numbers appearing as first token on input */
/* records. Ignore any records that do not have a */
/* valid number as the first token. */

'stagenum' /* What stage are we? */
if rc=1 then exit 24 /* First stage? Exit with RC=24 */

sum=0 /* Initialize SUM */
do forever

'readto i' /* Read a record from the pipeline */
if rc¬=0 then do /* Check the return code */

if rc=12 then 'output 'sum /* No more input? Write sum. */
/* We're already leaving; ignore RC */

leave /* In any case, leave the loop. */
end
val=word(i,1) /* Pull off the first token */
if datatype(val)='NUM' then /* Is it a valid number? */

sum=sum+val /* Yes, so add it to SUM */
end

exit 0

Figure 134. ADD REXX: Using STAGENUM Pipeline Subcommand

Writing Stages

Chapter 5. Writing Stages 91

Processing Arguments
You can code stages to process arguments that are specified when the stage is
invoked. Use the REXX PARSE ARG instruction to get these arguments. Figure 135
shows an improved AUTHOR REXX. The original AUTHOR REXX is in Figure 133
on page 90. This version of AUTHOR REXX accepts the name of the author as an
argument. The name is used to create the new author record. The new and
changed statements are highlighted.

To change the author record in file EDITION1 SCRIPT and have the result written
to EDITION2 SCRIPT, you would enter:
pipe < edition1 script | author Ward E. Guy | > edition2 script a
Ready;

Executing CP and CMS Commands
CMS Pipelines processes any commands sent to the default environment (the
environment in effect when no REXX ADDRESS instructions are issued). It does
not forward unresolved pipeline subcommands to CMS or CP. Instead it gives a
return code of -7.

Look at the MINUS7 REXX stage in Figure 136. It sends a CMS TELL command to
the default environment.

Here is an example of the error produced by MINUS7 REXX:

/* AUTHOR REXX -- Change the author in the header of a SCRIPT file */
signal on error
parse arg name /* Get the name */
if name='' then name='Anonymous' /* Handle missing argument */

authrec='.* Author: '||name /* Build new author record */
do forever

'readto record' /* Read a pipeline record */
uprec=translate(record) /* Fold it to uppercase */

if pos('AUTHOR:',uprec)>0 & left(uprec,2)='.*' then do
'output' authrec /* Write the new author record */
leave /* Leave DO FOREVER */

end
else 'output' record /* Otherwise, write record to output */

end

'short' /* Copy remaining records to output */

error: /* Error routine and exit */
if rc=12 then rc=0
exit rc

Figure 135. AUTHOR REXX: Processing Arguments

/* MINUS7 REXX -- Send a TELL command to the default environment */
'tell * Hello'
'short'
exit rc

Figure 136. MINUS7 REXX: Sending a Command to the Wrong Environment

Writing Stages

92 z/VM: CMS Pipelines User’s Guide

pipe minus7 | console
2 *-* 'tell * hello'

+++ RC(-7) +++
Ready;

When you want to send a command to CP or CMS from a stage, use the REXX
ADDRESS instruction. For example, suppose you want to access a minidisk:
address command 'ACCESS 5C5 B/A' /* Access the minidisk */

Do not use the ADDRESS instruction without a command unless you know how to
get the pipeline environment back. You may not be able to issue pipeline
commands once you have changed the default CMS environment to the
COMMAND environment.

One way to get the command environment back is by changing the environment
from within a REXX subroutine (or function). When a subroutine returns, REXX
restores the default command environment to the one that was in effect when the
subroutine was called. So, it is safe to change the default command environment in
a subroutine that does not issue pipeline subcommands and does not call
subroutines that issue pipeline subcommands.

Another Example Stage—TITLE REXX
This section presents an example stage named TITLE REXX that adds a title
before every 20 lines of input. The TITLE REXX filter can be used just like any
other filter in a pipeline:
pipe < legumes script | title Legumes: | console
Legumes:

Peas
Bush beans
Pole beans
Lima beans
Ready;

TITLE REXX, in Figure 137, reads the input given to it from the pipeline. It writes a
title (given as an argument to it) followed by 20 lines, and then another title, and so
on.

/* TITLE REXX -- Output a title every 20 lines */
parse arg title_line /* Get input arguments */

'readto input_line' /* Read first record into variable */
do line_count=0 while rc=0 /* Loop while there are records */

if line_count//20 = 0 then do /* 20-line boundary? */
'output 'title_line /* Yes- write the title line... */
'output ' /* write a blank line */

end
'output 'input_line /* Write the input record */
if rc¬=0 then leave /* Check RC from OUTPUT */
'readto input_line' /* Read the next pipeline record */

end
if rc=12 then rc=0 /* Ignore 12, which means EOF */
exit rc

Figure 137. TITLE REXX: A User-Written Stage Example

Writing Stages

Chapter 5. Writing Stages 93

The WHILE clause on the DO instruction checks the return code after READTO.
When all the records are read, READTO gives a return code of 12 and ends the
loop.

Notice that the return code is checked after the last OUTPUT pipeline
subcommand, but not after the first two. The reason is that once one OUTPUT fails,
following OUTPUTs will also fail. So, we save some code by checking only the last
OUTPUT.

TITLE REXX also shows how to write a blank record to the output stream. Look at
the second OUTPUT pipeline subcommand. Two blanks follow the OUTPUT
keyword before the single quotation mark. The first blank is not part of the string
that OUTPUT writes, but the second blank is. Therefore, OUTPUT writes a record
containing a single blank to the output stream.

Using CALLPIPE to Write Subroutine Pipelines
The CALLPIPE pipeline subcommand lets your stage run another pipeline to
process the records in the input stream. For example, suppose you are writing a
stage that is to make all records flowing through it 80 bytes in length. Here is one
way to do it:

Because CMS Pipelines has CHOP and PAD stages, however, there is a simpler
way to do it. The CALLPIPE pipeline subcommand makes it possible, as shown in
Figure 139.

Rather than use READTO and OUTPUT to process each record, we use a
CALLPIPE pipeline subcommand to process all of the records. The operand on
CALLPIPE is called a subroutine pipeline.

The pairs of asterisks and colons (*:) are connectors. They must be in stages by
themselves as shown. The connector at the beginning of the subroutine pipeline is
known as the input connector. The connector at the end is known as the output
connector. A connector cannot be used in the middle of the subroutine pipeline.

The input and output connectors connect the subroutine pipeline to the pipeline that
called your stage. When both connectors are used, CALLPIPE, in effect, inserts a

/* FIXED REXX -- Make all records 80 bytes in length */
signal on error /* Set up error handling */
do forever

'readto in' /* Pipeline subcommand to read a record */
'output' left(in,80) /* Pad or chop records as necessary */

end
error:
if rc=12 then rc=0 /* RC=12 is a normal condition */
exit rc /* Return to CMS Pipelines */

Figure 138. FIXED REXX: Using READTO and OUTPUT Pipeline Subcommands

/* FIXED REXX -- Make all records 80 bytes in length */
'callpipe *: | chop 80 | pad 80 | *:'
exit rc

Figure 139. FIXED REXX: Using CALLPIPE Pipeline Subcommand

Writing Stages

94 z/VM: CMS Pipelines User’s Guide

new section of pipeline in the pipeline that called your stage. By making these
connections, all records remaining in the stage’s input stream flow through the
subroutine and are written to the stage’s output stream.

In the following PIPE command, for example, the output of the CMS stage is
connected to the input of the FIXED stage. The output stream of FIXED is
connected to the input stream of the > stage:
pipe cms listfile * * a | fixed | > adisk list a fixed

Figure 140 shows a map of the pipeline before FIXED begins to run.

When the CALLPIPE subcommand is executed, however, the output stream of the
CMS stage is connected to the input stream of CHOP. And, the output stream of
PAD is connected to the input stream of the > stage, as shown in Figure 141.

CALLPIPE returns when all stages of the new pipeline have ended. The return code
from CALLPIPE is the worst of the return codes from the stages in the subroutine
pipeline (just like the PIPE command). When CALLPIPE finishes, CMS Pipelines
restores the original connections so that the map of the pipeline is as shown in
Figure 140. Then FIXED executes a REXX EXIT instruction and ends.

This leads us to an important point about CALLPIPE. When CALLPIPE is executed,
the dispatcher gets control (just as it does for all pipeline subcommands). It adds
the stages in the CALLPIPE command to the set of stages it is already dispatching
and makes the requested connections. Records flow through the stages in the
usual manner. But, and this is the important point, your stage itself does not resume
execution until CALLPIPE ends.

When all the stages in the subroutine pipeline have ended CALLPIPE ends, and the
original streams are reconnected, making your stage eligible for dispatching again.
Your stage in the main pipeline can use both its input and output streams as though
CALLPIPE’s connections never existed.

┌───────┐ ┌───────┐ ┌───────┐
│ cms ├────────�│ fixed ├────────�│ > │
└───────┘ └───────┘ └───────┘

Figure 140. Map of Original Pipeline

┌───────┐ ┌───────┐ ┌───────┐
│ cms ├┐ ─┤ fixed ├─ ┌�│ > │
└───────┘│ └───────┘ │ └───────┘

│ │
│ ┌───────┐ ┌───────┐ │
└─�│ chop ├──�│ pad ├─┘

└───────┘ └───────┘

Figure 141. Map of Pipeline When CALLPIPE Is Running

Writing Stages

Chapter 5. Writing Stages 95

Storing Sequences of Stages
CALLPIPE makes it easy to store stages or sequences of stages that you often use
in PIPE commands. Suppose that you often use this SPECS stage, which adds
sequence numbers to the beginning of a file:
specs recno 1 1-* next

You could save it in as a subroutine pipeline within a user-written stage:
/* ADDSEQ REXX -- Adds sequence numbers to the beginning of records */
'callpipe *: | specs recno 1 1-* next | *:'
exit 0

Then use ADDSEQ REXX whenever you want to add sequence numbers:
pipe < mybook script | addseq | > newbook script a
Ready;

More often, you’ll be saving sequences of stage. Figure 142 shows a user-written
stage named COUNTWDS REXX. It contains a subroutine pipeline that counts the
number of words in its primary input stream, adds some text, and writes the result
to its primary output stream. It packages two stages together for frequent use.

The connectors used at the beginning and end of the pipeline subcommand allow
the subroutine pipeline to take over the input and output streams for the
COUNTWDS stage. Records flow into the subroutine pipeline through its input
connector and later flow out through its output connector.

count words writes to the output stream the number of words delimited by a blank
in the input stream. specs /Number of words is/ 1 1-* nextword inserts a prefix of
Number of words is at the beginning of the record containing the count information.
It then writes the resulting record to the output stream.

Here’s an example of how to use the user-written stage to display the number of
words in the file BLACK BOOK:
pipe < black book | cons
Anna Karinina
Scarlet OHara
Miss Piggy
pipe < black book | countwds | cons
Number of words is 6.
Ready;

Other Formats of Connectors
The connectors we have been using (*:) are actually abbreviations. You’ll also see
the input and output connectors written like this:

/* COUNTWDS REXX */
'callpipe',

'*:', /* connect to output of stage preceding caller */
'| count words', /* count number of words in input stream */
'| specs /Number of words is/ 1 1-* nextword', /* prefix record */

/* with "Number of words is" */,
'| *:' /* connect to input of stage following caller */

exit

Figure 142. COUNTWDS REXX: Subroutine Pipeline Example

Writing Stages

96 z/VM: CMS Pipelines User’s Guide

*.input:
*.in:
*.output:
*.out:

So, we can rewrite FIXED REXX as follows:
/* FIXED REXX -- Make all records 80 bytes in length */
'callpipe *.input: | chop 80 | pad 80 | *.output:'
exit rc

You may see other connector formats in CALLPIPE subcommands and ADDPIPE
subcommands that others have written. We’ll also be using these formats later in
Chapter 6, “Multistream Pipelines,” on page 107, which also discusses the
ADDPIPE subcommand.

Using Connectors with CALLPIPE
The CALLPIPE pipeline subcommands shown in the previous section used
connectors to connect the specified pipeline to the input and output streams. In
most cases, you’ll want to use both connectors, but their use is not required. You
can omit one connector from either end of the pipeline, or even from both ends.

Let’s take the case in which you omit the connector from the end. Figure 143 shows
an example:

In LOGIT REXX, a time stamp is added to the records from the input stream. Then
the records are appended to the file LOGIT FILE A. But, because there isn’t a
connector at the end of CALLPIPE, they do not flow out of the user-written stage.
Here is an example of how you might use LOGIT:
pipe literal Returned Bill Smith's call. | logit
Ready;
pipe literal Worked on Project X today. | logit
Ready;

Figure 144 shows a map of the previous PIPE commands when CALLPIPE is
running.

/* LOGIT REXX */
'callpipe',

'*:', /* Connect to input stream */
'| specs /'date() time()'/ 1', /* Tack on date and time */

'1-* nextword', /* Put input record */
'| >> logit file a' /* Write records to file */

exit rc

Figure 143. LOGIT REXX: Subroutine without an Output Connector

┌─────────┐ ┌─────────┐
│ literal ├─┐ ─┤ logit │
└─────────┘ │ └─────────┘

│
│ ┌─────────┐ ┌─────────┐
└─�│ specs ├───�│ >> │

└─────────┘ └─────────┘

Figure 144. Map of Pipeline Using Only an Input Connector

Writing Stages

Chapter 5. Writing Stages 97

What happens if you put a stage after LOGIT? Doing so is not an error. LOGIT just
doesn’t happen to write to its output stream, so no records flow into any following
stage.

Figure 145 shows a CALLPIPE pipeline subcommand from which the input
connection is omitted. The SEELOG stage is meant to be used as the first stage of
a pipeline.

Here is an example run:
pipe seelog | console
10 Dec 1991 12:38:26 Returned Bill Smith's call.
10 Dec 1991 12:38:30 Worked on Project X today.
Ready;

Figure 146 shows a map of the above PIPE command when CALLPIPE is running.

What happens if you don’t use SEELOG as the first stage? We’ve already seen a
similar situation with LOGIT. Putting a stage before SEELOG is not an error.
SEELOG doesn’t read its input stream, so the records don’t make it past SEELOG.
For example:
pipe literal Lost forever | seelog | console
10 Dec 1991 12:38:26 Returned Bill Smith's call.
10 Dec 1991 12:38:30 Worked on Project X today.
Ready;

Figure 147 on page 99 shows a map of the above PIPE command when CALLPIPE
is running. The < stage is not connected to the output stream from LITERAL.
Consequently, the record from LITERAL is not processed.

/* SEELOG REXX */
'callpipe',

'< logit file a', /* Read the LOGIT FILE */
'| take last 2', /* Take the last 2 records */
'| *:' /* Write to output stream */

exit rc

Figure 145. SEELOG REXX: Subroutine without an Input Connector

┌─────────┐ ┌─────────┐
│ seelog ├─ ┌─�│ console │
└─────────┘ │ └─────────┘

│
┌─────────┐ ┌─────────┐ │
│ < ├───�│ take ├─┘
└─────────┘ └─────────┘

Figure 146. Map of Pipeline Using Only an Output Connector

Writing Stages

98 z/VM: CMS Pipelines User’s Guide

Finally, it is possible to omit all connectors from CALLPIPE. In this case, the
subroutine pipeline is completely independent from the stage’s input and output
streams. See “IMMCMD Stage” on page 160 for an example use of a CALLPIPE
pipeline subcommand without connectors.

Using CALLPIPE with Other Pipeline Subcommands
A user-written stage that contains a CALLPIPE pipeline subcommand can also
contain other pipeline subcommands. There isn’t anything special about CALLPIPE
that prevents you from also using pipeline subcommands like READTO and
OUTPUT. You just need to be aware of how CALLPIPE is connected to the input or
output streams.

Let’s look at SEELOG REXX again. Suppose we wanted to process records in the
input stream. It is possible because the subroutine pipeline did not read the input
stream—the records remain in the input stream. Figure 148 shows a new SEELOG
REXX that reads any records in its input stream after the CALLPIPE is processed.

We’ve added the usual error-handling instructions and a DO loop. The DO loop
reads all records in the input stream, prefixes those records with a date and time,
and writes them to its output stream. If there aren’t any records in the input stream,
CMS Pipelines will give a return code of 12 when READTO is executed.

After CALLPIPE ends, SEELOG REXX reads records from its input stream,
processes them, and writes them to its output stream. Thus, you would expect to
see these records after those from the file LOGIT FILE. That is, in fact, the result
you get:

┌─────────┐ ┌─────────┐ ┌─────────┐
│ literal ├───�│ seelog ├─ ┌─�│ console │
└─────────┘ └─────────┘ │ └─────────┘

│
┌─────────┐ ┌─────────┐ │
│ < ├───�│ take ├─┘
└─────────┘ └─────────┘

Figure 147. Map of Pipeline with Unconnected Streams

/* SEELOG REXX */
signal on error
'callpipe',

'< logit file a', /* Read the LOGIT FILE */
'| take last 2', /* Take the last 2 records */
'| *:' /* Write to output stream */

do forever
'readto in' /* Read a record from the input */
'output' date() time() in /* Add time stamp and write it */

end

error:
if rc=12 then rc=0
exit rc

Figure 148. SEELOG REXX: Using CALLPIPE, READTO, and OUTPUT Pipeline
Subcommands

Writing Stages

Chapter 5. Writing Stages 99

pipe literal Lost forever | seelog | console
10 Dec 1991 12:38:26 Returned Bill Smith's call.
10 Dec 1991 12:38:30 Worked on Project X today.
10 Dec 1991 13:19:47 Lost forever
Ready;

How would you put the records in input stream to SEELOG before those in the log
file? You would have to move the DO loop before the CALLPIPE pipeline
subcommand. You would also have to change the error handling, as shown in
Figure 149.

As you would expect, the input records are processed first:
pipe literal Lost forever | seelog | console
10 Dec 1991 13:32:36 Lost forever
10 Dec 1991 12:38:26 Returned Bill Smith's call.
10 Dec 1991 12:38:30 Worked on Project X today.
Ready;

Notice in Figure 149 that we do not end the stage when a return code of 12 is
received on READTO. Instead, we just leave the DO loop. In this case, we have
some other processing to do. The point is that a return code of 12 does not always
mean you must end a stage. In many situations, a return code of 12 serves as a
signal to your stage to alter its processing flow. The action to be taken is your
choice.

In the above SEELOG variants, the CALLPIPE command did not have a connection
to the stage’s input stream. Suppose CALLPIPE does have a connection to the
input stream. In that case, you could still execute READTO pipeline subcommands
before the CALLPIPE. You might, for example, read and process header records by
using READTOs and OUTPUTs, and then process the remaining records with a
CALLPIPE.

In the following example, OUTPUT is used to write a header record, then
CALLPIPE processes the remaining records:
/* UENG REXX -- Convert file to uppercase and change header */
signal on error

'output .* This file contains uppercase records'
'callpipe *: | xlate upper | *:'

error:
if rc=12 then rc=0
exit rc

/* SEELOG REXX */
do forever /* Process the input stream */

'readto in' /* Read a record */
if rc=12 then leave /* Stream not connected? Leave loop */
'output' date() time() in /* Write output record */
if rc=12 then exit 0 /* Output not connected? Give up! */
else if rc<>0 then exit rc /* Pass other nonzero codes to PIPE */

end
'callpipe',

'< logit file a', /* Read the LOGIT FILE */
'| take last 2', /* Take the last 2 records */
'| *:' /* Write to output stream */

exit rc

Figure 149. SEELOG REXX: Another Variation

Writing Stages

100 z/VM: CMS Pipelines User’s Guide

UENG REXX writes one header record with an OUTPUT subcommand. Then it
executes a CALLPIPE subcommand to read the remaining records from the input
stream, translate them to uppercase, and write them to the output stream. Let’s look
at an example use of UENG:
pipe < lower script | console
Apples
Bananas
Cherries
Pears
Ready;
pipe < lower script | ueng | console
.* This file contains uppercase records
APPLES
BANANAS
CHERRIES
PEARS
Ready;

Another pipeline subcommand that is handy to use with CALLPIPE is PEEKTO.
Suppose you’re writing a stage that processes three different kinds of forms. You
need to look at the first record to determine which form it is. But, you don’t want to
read the record using READTO because that would remove the record from the
input stream. Once you have determined which form is being processed, you want
to process all pipeline records, including the first, with an appropriate subroutine
pipeline.

The PEEKTO pipeline subcommand is perfect for this kind of problem. Here is a
fragment of a stage that does it:
/* Stage fragment to process multiple forms */
signal on error

'peekto in'
select
when pos("Invoice",in) then

'callpipe *: | ... | *:' /* CALLPIPE that processes invoices */
when pos("Order",in) then

'callpipe *: | ... | *:' /* CALLPIPE that processes orders */
when pos("Request for Bid",in) then

'callpipe *: | ... | *:' /* CALLPIPE that processes bids */
otherwise

exit 99 /* Tell CMS Pipelines you found an unidentified form */
end /* select */

error:
if rc=12 then rc=0
exit rc

To summarize what we’ve said about connections and streams, we end this section
with COMBO REXX. (See Figure 150 on page 102.) COMBO processes three
records using READTO/OUTPUT, and then three with CALLPIPE, and then three
more with READTO/OUTPUT and so on until it gets a nonzero return code. The
TAKE 3 stage in CALLPIPE forces it to end after processing three records. CMS
Pipelines restores the connections and loops back to READTO/OUTPUT again.

Writing Stages

Chapter 5. Writing Stages 101

Here is an example use of COMBO REXX:
pipe < number list | console
one
two
three
four
five
six
seven
eight
nine
ten
Ready;
pipe < number list | combo | console
From OUTPUT: one
From OUTPUT: two
From OUTPUT: three
From CALLPIPE: four
From CALLPIPE: five
From CALLPIPE: six
From OUTPUT: seven
From OUTPUT: eight
From OUTPUT: nine
From CALLPIPE: ten
Ready;

Additional CALLPIPE Examples
Figure 151 on page 103 shows FILEDATE REXX. FILEDATE generates a line
identifying the first occurrence of a file in the search order and writes the
information to its output stream.

/* COMBO REXX -- Take turns handling records */
signal on error
do forever /* Process a group of six records */

do i=1 to 3 /* Process only three records */
'readto record' /* Read a record */
'output From OUTPUT:' record /* Write it with a tag */

end
'callpipe',

'*:',
'| take 3', /* Process only three records */
'| specs /From CALLPIPE:/ 1', /* Put tag on record */

'1-* nextword', /* Put input record on it */
'|*:'

end

error:
if rc=12 then rc=0
exit rc

Figure 150. COMBO REXX: Using READTO, OUTPUT, and CALLPIPE Pipeline
Subcommands

Writing Stages

102 z/VM: CMS Pipelines User’s Guide

STATE gives return code 28 without issuing a message when the file does not exist.
FILEDATE REXX receives this return code (or any worse one) and can act
appropriately.

Here is an example run. FILEDATE is used to find the first occurrence of ALL
XEDIT:
pipe filedate all xedit | console

ALL XEDIT S2 V 63 94 9/21/91 10:37:37
Ready;

Another example you may find useful is a TRACING filter. The argument to
TRACING is a string of characters. TRACING prefixes the string to the contents of
all records read, displays the records on the terminal, and passes the unmodified
record on to the output. The function of the pipeline remains unchanged, but you
have added a display of data as it passes through a specific stage. The data is
prefixed with a message. Figure 152 shows the TRACING subroutine.

In the CHANGE stage, a null string is specified as the string to be changed. When
a null is specified, the string to be substituted (the contents of id, in this case) is
inserted at the beginning of each record passing through the stage. The modified
records are displayed, and then the SPECS stage removes the identifier.

/* FILEDATE REXX -- Generate the information on a file */
parse arg file
if words(file)=2 then file=file '*'

'callpipe', /* Subroutine pipeline */
'state' file, /* Look for it */
'| specs 1-22 1', /* Rearrange it */

'28.7 next',
'37-44 next',
'56-* next',

'| specs 1-* 1.80 right', /* Right-adjust */
'| *:' /* Write to output */

exit rc

Figure 151. FILEDATE REXX: Using CALLPIPE Pipeline Subcommand

/* TRACING REXX -- show data in middle of the pipeline */
/* Add the tag passed to TRACING, display each */
/* record, and delete the tag before passing the output. */
parse arg id /* get argument in mixed case */
if id = '' then do

'stagenum' /* get the stage number */
id = 'Stage' rc /* use it as tag */

end
id = id':' /* append a colon */

'callpipe',
'*:', /* Read from input */
'| change //'id'/', /* Insert id first */
'| console', /* Type */
'| specs' length(id)+1'-* 1', /* Remove id */
'| *:' /* Pass on */

exit rc

Figure 152. TRACING REXX: Using CALLPIPE Pipeline Subcommand

Writing Stages

Chapter 5. Writing Stages 103

The following example shows how to run TRACING. (The first PIPE command
shows the contents of the TEMP DATA file.)
pipe < temp data | console
This is the first line.
This is the second line.
Ready;
pipe < temp data | tracing first | xlate upper | tracing second | console
first :This is the first line.
second :THIS IS THE FIRST LINE.
THIS IS THE FIRST LINE.
first :This is the second line.
second :THIS IS THE SECOND LINE.
THIS IS THE SECOND LINE.
Ready;

Testing Stages
When you develop a new stage it is easiest to test it by itself. LITERAL and
CONSOLE stages are especially useful for testing, as are disk files. You can use a
device driver for whatever device is convenient.

Two simple ways to test a filter are:
pipe literal aa004zz q | myfilter | console

pipe console | myfilter | console

Enter the input you want, then look at the output to see if it is correct.

When your input becomes too much to type over again, create a file with test
cases. One way to keep test cases organized is by using stylized file names. For
example, you might use the name of the stage for the names of files containing the
test cases. This lets you use the file type to indicate which test case it is (for
example, MYFILTER TEST1, MYFILTER TEST2).

To test your filter against the data in MYFILTER TEST1, displaying the result on the
terminal:
pipe < myfilter test1 | myfilter | console

If the output is lengthy, consider using result files with stylized file names:
pipe < myfilter test1 | myfilter | > myfilter result1 a

From a FILELIST display, the previous two commands can be simplified a little to
save on typing. Enter, for example, one of these commands on the FILELIST
display line for MYFILTER TEST1:
pipe < / | /n | console

pipe < / | /n | > /n result1 a

When you are developing a set of filters, test them from left to right and store the
output of the first filter on disk so that you can use it over and over again to test the
second filter, and so on.

When entering PIPE commands on a FILELIST display, do not use a slash (/) to
delimit strings in filters (such as LOCATE). The slash (/) is resolved to the file name,
file type, and file mode of the file listed, so you cannot use that for a delimiter. We
often use a comma (,) to delimit the argument string to LOCATE. For example:
pipe < / | locate ,pattern, | console

Writing Stages

104 z/VM: CMS Pipelines User’s Guide

Tracing Stages
You can use the REXX TRACE instruction when debugging stages. For example,
the following statement starts an interactive trace:
Trace ?R /* Starts interactive REXX debug */

Each line of your stage is displayed as it is executed. After each line is displayed,
execution pauses until you press the ENTER key or until you end the trace by
entering TRACE OFF. Use the SAY instruction to display the contents of variables.

In lengthy stages, frame the code that needs to be traced:
Trace Results /* Starts REXX trace */

.... /* code that is traced on the terminal */
Trace Negative /* Stops REXX trace */

All other trace options can also be used. See the z/VM: REXX/VM Reference for
more about TRACE.

If you use several user-written stages in a pipeline, you would usually trace only
one at a time. When you trace more than one, the displayed traces will be
interleaved. Remember that CMS Pipelines uses a dispatcher and that execution of
the stages is interleaved. Consequently, so are the trace displays.

You might want to trace two stages just to see the dispatcher in action. Remember
that the dispatcher gets control whenever a pipeline subcommand is executed. At
that time the dispatcher can choose to run any other stage. Note that you do not
see the trace record for a pipeline subcommand until it ends—another traced stage
might be dispatched before the pipeline subcommand ends.

Improving Performance
You can improve performance of stages in several ways:

v Invoke the CMS EXECLOAD command for the stages when they are first called.
See the z/VM: CMS Commands and Utilities Reference for more about the
EXECLOAD command.

v Put the programs into a shared segment.

v Compile the programs with the REXX compiler.

An application using many stages can be packaged into a filter package and
installed as a nucleus extension. This may improve performance the same way that
using EXECLOAD does. You also have the convenience of storing a single file on a
common disk for users of the application. See Chapter 12, “Filter Packages,” on
page 225 for more information on creating and using filter packages.

Writing Stages

Chapter 5. Writing Stages 105

106 z/VM: CMS Pipelines User’s Guide

Chapter 6. Multistream Pipelines

Many CMS Pipelines stages can use multiple input streams and multiple output
streams. These stages are like houses that have several front doors and several
back doors. So far we have been admitting records through only one front door, the
primary input stream, and have been whisking them out the corresponding back
door, the primary output stream (Figure 153).

Now we’ll let records pass through the other front and back doors, which we refer to
as the secondary input and output streams (Figure 154).

Some stages use even more than two input and output streams. As we’ll see, the
use of multiple streams greatly extends the range of problems you can solve with
CMS Pipelines.

How Stages Use Multiple Streams
Different stages use multiple input and output streams in different ways. Some, like
LOOKUP, use a secondary input and a secondary and tertiary output stream.
Some, like LOCATE, use a secondary output, but not a secondary input. Others,
like FANOUT, can use more than two output streams.

The LOCATE stage, for example, writes records that are selected to its primary
output stream. It writes records that are not selected to its secondary output stream
(see Figure 155 on page 108).

┌──────────────┐
│ Stage │

─────Primary Input Stream───�│ │────Primary Output Stream────�
│ │
│ │
└──────────────┘

Figure 153. Stage with One Input and One Output Stream

┌──────────────┐
─────Primary Input Stream───�│ Stage │────Primary Output Stream────�

│ │
│ │

─────Secondary Input Stream─�│ │────Secondary Output Stream──�
└──────────────┘

Figure 154. Stage with Two Input and Output Streams

© Copyright IBM Corp. 1991, 2009 107

The FANOUT stage, which is described in this chapter, writes each record it reads
from its primary input stream to all of its connected output streams (Figure 156).

The records flowing from these secondary outputs can be processed by other
stages (Figure 157).

Like LOCATE, most filters write rejected data to their secondary output streams.
DROP, for example, writes the discarded records to its secondary output stream.
CHOP writes the discarded portion of each record to its secondary output stream.

Some stages, for example SPECS, do not have a secondary output stream. When
in doubt, refer to the stage descriptions in z/VM: CMS Pipelines Reference.

Primary Input Stream Primary Output Stream
┌───────────┐ ┌──────────────┐ ┌──────────┐
│ BOB SMITH ├───────�│ LOCATE /BOB/ ├───�│ BOB SMITH│
│ SUE JONES │ │ Stage │ └──────────┘
└───────────┘ │ │

│ │ ┌──────────┐
│ ├───�│ SUE JONES│
└──────────────┘ └──────────┘

Secondary Output Stream

Figure 155. LOCATE with a Secondary Stream

Primary Input Stream Primary Output Stream
┌───────────┐ ┌──────────────┐ ┌───────────┐
│ BOB SMITH ├───────�│ FANOUT ├───�│ BOB SMITH │
│ SUE JONES │ │ Stage │ │ SUE JONES │
└───────────┘ │ │ └───────────┘

│ │ ┌───────────┐
│ ├───�│ BOB SMITH │
└──────────────┘ │ SUE JONES │

└───────────┘
Secondary Output Stream

Figure 156. FANOUT with Multiple Output Streams

┌──────────────┐ ┌──────────────┐ ┌──────────────┐
──────────�│ LOCATE /BOB/ ├───�│ COUNT WORDS ├────�│ > BOB DATA A │

│ Stage │ │ Stage │ │ Stage │
│ │ │ │ │ │
│ ├─┐ │ │ │ │
└──────────────┘ │ └──────────────┘ └──────────────┘

│
│ ┌──────────────┐
└─�│ > NOTBOB │

│ DATA A │
│ Stage │
│ │
└──────────────┘

Figure 157. Processing Secondary Outputs

Multistream Pipelines

108 z/VM: CMS Pipelines User’s Guide

Writing Multiple Pipelines
When more than one input or output stream is used, we no longer have a map in
which all stages are arranged in a straight line. Instead, we have multiple pipelines.
To use more than one input stream or more than one output stream, or a
combination, we need to write multiple pipelines in a single PIPE command. To
show how to write multiple pipelines, we’ll use a simple example.

Figure 158 shows two pipelines. Although the pipelines aren’t connected in any way,
you can still put both of them in a single PIPE command. To do so, use the
ENDCHAR option on the PIPE command to define an end character. (See
“Specifying PIPE Options” on page 8 for information about specifying PIPE
command options.) Then use that end character in the PIPE command to indicate
where each pipeline ends.

End Characters
You can use any character for the end character if it is not defined as a stage
separator, escape character, or one of the characters *.:() which have
special meaning.

Figure 159 shows how you would write the above pipelines in a single PIPE
command. In the example, a question mark is defined and used as the end
character. Notice that an end character is not used after the last pipeline. Specifying
one would cause an error.

The records flowing through the two pipelines are completely independent of each
other. In fact, you could get the same results by using two PIPE commands.

The above example shows the mechanics of writing multiple pipelines in a single
PIPE command. But, we haven’t said anything about connecting streams together.
In each of the above pipelines, the primary output stream of the < stage command

┌──────────────────┐ ┌──────────────────┐
│ < profile exec ├───�│ > profile save a │
└──────────────────┘ └──────────────────┘

┌──────────────────┐ ┌──────────────────┐
│ < all notebook ├───�│ > all save a │
└──────────────────┘ └──────────────────┘

Figure 158. Maps of Two Independent Pipelines

┌──────── End character ─────────────┐
│ 	

pipe (endchar ?) < profile exec | > profile save a ? < all notebook | > all save a

───────────────┬───────────────── ───────────────┬─────────────
│ │

First pipeline Second pipeline

Figure 159. Two Pipelines Separated by an End Character

Multistream Pipelines

Chapter 6. Multistream Pipelines 109

is connected to the primary input stream of the > stage. We know this because the
stages are adjacent, connected with the stage separator (|). To use the secondary
input and output streams of stages, we need some way to connect stages that are
not adjacent.

Connecting Streams
This section describes the different ways that you can connect streams. When
stages are adjacent to each other in a pipeline, the primary output stream of a
stage is connected to the primary input stream of the stage to its right. CMS
Pipelines makes these connections automatically for us.

To connect the streams of stages that do not happen to be adjacent, however, we
need to use labels on the stages. A label can have from one to eight characters. It
must be followed by a colon (for example, a:). Keep in mind that if you have two of
the same stages (for instance two LOCATE stages) in one pipeline, each LOCATE
stage must have a unique label.

To connect to a stage’s multiple streams, first put a label in front of the stage whose
secondary input or output stream you wish to use. This defines (or declares) the
label. Then put a matching label elsewhere in the PIPE command in a stage by
itself (see Figure 160). This is called a label reference. Labels must be defined in
the PIPE command before any references to them. (Otherwise, an error occurs.)

The label definition on a stage allows the possibility of multiple streams to be
connected through intersecting pipelines, and each label reference in a subsequent
pipeline defines a new input and output stream for the stage. Streams are defined
in input/output pairs, even if one of the pair is not used. (Unlike secondary streams,
the primary input and output streams for a stage are defined by specifying the stage
in a pipeline.)

The location of the matching label determines what connections are made between
the stages. The matching label can be in one of three locations:

1. At the beginning of a pipeline

In this case, CMS Pipelines makes connections to the secondary outputs of the
stage defining the label.

2. At the end of a pipeline

In this case, CMS Pipelines makes connections to the secondary inputs of the
stage defining the label.

3. In the middle of a pipeline.

In this case, CMS Pipelines makes connections to the secondary inputs and
secondary outputs of the stage defining the label.

/* */ ┌──────── Label Definition
│

'pipe (endchar ?)', 	
'< test data | a: locate /BOB/ | > bob data a', /* First pipeline */
'?', /* End character */
'a: | > notbob data a' /* Second pipeline */
�
│
└───── Label Reference

Figure 160. Defining and Referencing Labels

Multistream Pipelines

110 z/VM: CMS Pipelines User’s Guide

In Figure 160 on page 110, for example, the label reference is at the beginning of
the second pipeline. So, the secondary output stream of LOCATE is connected to
the primary input stream of the > notbob data a stage. All the records that LOCATE
rejects are written to the file NOTBOB DATA A.

The next three sections describe the above cases.

Connecting to a Secondary Output Stream
Often, when you want to use the secondary output of a stage, you are, in effect,
trying to write a PIPE command with a map like the one in Figure 161.

The map shows that the secondary output of STAGE-B is connected to the primary
input of STAGE-D. How do you write a PIPE command to implement the map?
First, write the two pipelines in a single PIPE command:
/* Two pipelines, but no connections yet */
'pipe (endchar ?)',

'stage-a | stage-b | stage-c', /* First pipeline */
'?', /* End character */
'stage-d' /* Second pipeline */

Then define a label (a) by putting it in front of stage-b:
/* Two pipelines with a label defined, but no connections yet */
'pipe (endchar ?)',

'stage-a | a: stage-b | stage-c', /* First pipeline */
'?', /* End character */
'stage-d' /* Second pipeline */

Finally, connect the secondary output of stage-b to the primary input of stage-d by
putting the matching label at the beginning of the second pipeline. Notice that the
matching label is in a stage by itself:
/* Two pipelines with a label defined and with connections */
'pipe (endchar ?)',

'stage-a | a: stage-b | stage-c', /* First pipeline */
'?', /* End character */
'a: | stage-d' /* Second pipeline */

The label reference defines both a secondary input and output stream for stage-b.
Because of the position of the label reference, however, the secondary input stream
is not connected. So, in this example, the secondary input stream is defined but not
connected, while the secondary output stream is both defined and connected.

Whatever stage-b writes to its secondary output stream will now flow to the primary
input stream of stage-d.

┌────────────┐ ┌────────────┐ ┌────────────┐
│ STAGE-A ├───�│ a: STAGE-B ├───�│ STAGE-C │
│ │ │ ├─┐ │ │
└────────────┘ └────────────┘ │ └────────────┘

│
│ ┌────────────┐
└─�│ STAGE-D │

│ │
└────────────┘

Figure 161. Generic Map for Connecting to Secondary Outputs

Multistream Pipelines

Chapter 6. Multistream Pipelines 111

We used fictitious stages to show how to make connections. To create a real PIPE
command, substitute your own stages. For example, look at the following PIPE
command (a map is shown in Figure 162):
/* Matching label at beginning of pipeline */
'pipe (endchar ?)',

'< vote data | a: locate /YES/ | > yes data a', /* First pipeline */
'?', /* End character */
'a: | > no data a' /* Second pipeline */

The < stage reads the file VOTE DATA. Then the LOCATE stage finds all records
that contain the string YES. It writes these records to its primary output stream. The
> stage writes the records to the file YES DATA A.

LOCATE writes the records that do not contain YES to its secondary output stream.
The label a connects LOCATE’s secondary output stream to the primary input of the
> no data a stage. That stage writes the records to the file NO DATA A.

So far we’ve been showing multistream pipelines with one pipeline per exec line.
We did this because that format conveniently matches the layouts of the maps. In
an actual exec, the above PIPE command could be written on several lines, with
comments:
/* Putting it together */
'pipe (endchar ?)',

'< vote data', /* Read the VOTE DATA file */
'| a: locate /YES/', /* Select records containing YES */
'| > yes data a', /* Write them to YES DATA A */
'?',
'a:', /* Process LOCATE rejects */
'| > no data a' /* Write them to NO DATA A */

Connecting to a Secondary Input Stream
When you want to supply records to the secondary input of a stage, you are, in
effect, trying to write a PIPE command with a map like the one in Figure 163 on
page 113.

┌────────────┐ ┌────────────┐ ┌────────────┐
│ < vote data├───�│ a: locate ├───�│ > yes data │
│ │ │ /YES/ ├─┐ │ a │
└────────────┘ └────────────┘ │ └────────────┘

│
│ ┌────────────┐
└─�│ > no data a│

│ │
└────────────┘

Figure 162. Map Showing Secondary Output

Multistream Pipelines

112 z/VM: CMS Pipelines User’s Guide

The map shows that the primary output stream of STAGE-D is connected to the
secondary input of STAGE-B. The following example shows how to make the
connection:
/* Connecting to a secondary input */
'pipe (endchar ?)',

'stage-a | inlab: stage-b | stage-c',
'?',
'stage-d | inlab:'

The label inlab is defined on STAGE-B. Because the matching label is used at the
end of the second pipeline, the primary output stream of STAGE-D is connected to
the secondary input stream of STAGE-B. Therefore, any record that STAGE-D
writes will flow into the secondary input of STAGE-B.

The label reference defines a secondary input and a secondary output stream for
STAGE-B. In this example, the secondary input stream is both defined and
connected, while the secondary output stream is defined but not connected.

Later in this chapter we discuss filters that combine streams, such as FANIN and
FANINANY. When using filters like these, you’ll find yourself writing pipelines with
matching labels at the end, just as we did here.

Connecting to Both the Secondary Input and the Secondary Output
There may be times when you want to use both the secondary input and the
secondary output of a stage. Figure 164 shows a map of a stage that has
connections to both its secondary input stream and its secondary output stream.

The following example shows how to make the connections:

┌────────────┐ ┌────────────┐ ┌────────────┐
│ STAGE-A ├───�│ inlab: ├───�│ STAGE-C │
│ │ ┌─�│ STAGE-B │ │ │
└────────────┘ │ └────────────┘ └────────────┘

│
┌────────────┐ │
│ STAGE-D ├─┘
│ │
└────────────┘

Figure 163. Generic Map for Connecting to Secondary Inputs

┌────────────┐ ┌────────────┐ ┌────────────┐
│ STAGE-A ├───�│ con: ├───�│ STAGE-C │
│ │ ┌─�│ STAGE-B ├─┐ │ │
└────────────┘ │ └────────────┘ │ └────────────┘

│ │
┌────────────┐ │ │ ┌────────────┐
│ STAGE-D ├─┘ └─�│ STAGE-E │
│ │ │ │
└────────────┘ └────────────┘

Figure 164. Generic Map for Connecting to Secondary Inputs and Secondary Outputs

Multistream Pipelines

Chapter 6. Multistream Pipelines 113

/* */
'pipe (endchar ?)',

'stage-a | con: stage-b | stage-c',
'?',
'stage-d | con: | stage-e'

The records from STAGE-D flow into the secondary input of STAGE-B, while the
records from the secondary output of STAGE-B flow into STAGE-E. Records do not
flow from STAGE-D to STAGE-E through the stage containing the label con.

The label reference defines a secondary input and a secondary output stream for
STAGE-B. In this case, both of the new streams are connected.

Later in this chapter we describe the LOOKUP stage. We’ll see that in some uses
of LOOKUP, you’ll be using a map similar to the one in Figure 164 on page 113. For
those uses, you’ll need to write sections of pipelines like those above.

Using Several Secondary Streams
The previous examples used the secondary streams of a single stage. To solve
complex problems, however, you will often need to use the secondary streams of
several stages.

To use secondary streams of several stages, just define different labels. For
example, suppose you want to write all records containing the string BOB to one file.
Of the remaining records, you want to write those containing SUE to another file, and
all other records to a third file. Figure 165 shows a map of what you need to do.

Figure 166 on page 115 shows the PIPE command to do it.

┌──────────────────┐ ┌──────────────────┐ ┌──────────────────┐
│ │ │ ├────�│ │
│ < test data ├──�│ a: locate /BOB/ │ │ > bob data a │
│ │ │ ├─┐ │ │
└──────────────────┘ └──────────────────┘ │ └──────────────────┘

│
│ ┌──────────────────┐ ┌──────────────────┐
│ │ ├────�│ │
└──�│ b: locate /SUE/ │ │ > sue data a │

│ ├─┐ │ │
└──────────────────┘ │ └──────────────────┘

│
│
│ ┌──────────────────┐
│ │ │
└──�│ > other data a │

│ │
└──────────────────┘

Figure 165. Using Several Secondary Streams

Multistream Pipelines

114 z/VM: CMS Pipelines User’s Guide

The first pipeline writes all records having the string BOB to the file BOB DATA A.
The records rejected by locate /BOB/ flow into locate /SUE/ in the second
pipeline. Records having the string SUE are written to the file SUE DATA A.

The LOCATE stage in the second pipeline (locate /SUE/) defines a new label (b).
The secondary output stream of this LOCATE consists of all records that have
neither BOB nor SUE, which is precisely what we want in the last output file. The third
pipeline writes the records to OTHER DATA A. The label reference in the third
pipeline connects the secondary output stream of locate /SUE/ to the primary input
stream of > other data a.

Stages for Multistream Pipelines
This section introduces several stages that are frequently used in multistream
pipelines. Those stages are:
v FANOUT
v FANINANY
v FANIN
v OVERLAY
v MERGE
v LOOKUP.

In addition, this section revisits the SPECS and COUNT stages.

FANOUT Stage
By using labels on filters we can process data that the filter would otherwise
discard. But, what if we just want to copy the records in the pipeline to more than
one output stream? Use the FANOUT stage.

FANOUT copies each record that it reads from its input stream to all of its output
streams. To use FANOUT, put a label in front of it and refer to that label elsewhere
in the pipeline, as you do with other filters.

For example, suppose you are compiling demographic data. From a master file you
want to extract two sets of records and place them in separate files. In one file, you
want the names of all people who were born in 1956. In another file, you want to
list all males. All information concerning a person is on one master file record.

Here are some example records:

/* LOCATE3X */
'pipe (endchar ?)',

'< test data',
'| a: locate /BOB/',
'| > bob data a',
'?',
'a:',
'| b: locate /SUE/',
'| > sue data a',
'?',
'b:',
'| > other data a'

Figure 166. Three Pipelines in One PIPE Command

Multistream Pipelines

Chapter 6. Multistream Pipelines 115

Name Sex Date of Birth State
Smith, Robert M. MALE 12 06 1956 NY
Jones, Morgan E. FEMALE 05 05 1959 PA
Public, Waldo Q. MALE 11 13 1960 CA

It is not possible to use the secondary stream of LOCATE to solve the problem.
Suppose you use LOCATE to select all records containing 1956 and write them to a
file name 1956 DATA A. Then you try to use the secondary stream of LOCATE
/1956/ to find all males. This will not yield correct results because the secondary
stream would not contain any records from 1956. Your output file would be missing
all males born in 1956.

Because you want all records to be processed by both LOCATEs, use FANOUT to
copy the stream.

Figure 168 shows the PIPE command.

What if you wanted to create a third file in which all of the residents of New York
state were listed? You need to define yet another output stream (referred to as a
tertiary stream). FANOUT supports more than two streams. To define a third output
stream, refer to the same label again. Figure 169 on page 117 shows a map of the
pipeline.

┌───────────────┐ ┌───────────────┐ ┌───────────────┐ ┌───────────────┐
│ ├────�│ ├───�│ locate 36.4 ├───�│ │
│ < master file │ │ a: fanout │ │ /1956/ │ │ > 1956 data a │
│ │ │ ├─┐ │ │ │ │
└───────────────┘ └───────────────┘ │ └───────────────┘ └───────────────┘

│
│ ┌───────────────┐ ┌───────────────┐
└─�│ locate 21.4 ├───�│ │

│ /MALE/ │ │ > male data a │
│ │ │ │
└───────────────┘ └───────────────┘

Figure 167. Map of FANOUT Example

/* FANOUT example */
'pipe (endchar ?)',

'< master file', /* Read master file */
'| a: fanout', /* Copy records to all output streams */
'| locate 36.4 /1956/', /* Locate everyone born in 1956 */
'| > 1956 data a', /* Write records to file */
'?',
'a:',
'| locate 21.4 /MALE/', /* Locate all males */
'| > male data a' /* Write records to file */

Figure 168. FANOUT Example

Multistream Pipelines

116 z/VM: CMS Pipelines User’s Guide

Figure 170 shows the PIPE command. A third pipeline is added. The first stage in
the pipeline is a label that refers to the label defined on FANOUT, so an output
stream of FANOUT is connected to the input stream of the stage locate 45.2 /NY/.

FANOUT is not the only stage that supports more than two streams. To determine
whether a stage supports more than two streams, refer to the stage description in
the z/VM: CMS Pipelines Reference. To use more than two streams on stages that
support them, use the label repeatedly, as we did in the example.

FANINANY Stage
FANINANY reads a record from any input stream that has one and writes the
record to its output stream. It is useful when you want to combine the records of
several pipelines.

For example, Figure 171 on page 118 shows how to use FANINANY with LOCATE
to do an OR function with CMS Pipelines. The pipeline creates a file listing all
EXEC and SCRIPT files on file mode A. Any record containing the string EXEC or
SCRIPT in the appropriate columns is selected. FANINANY reads the selected
records from both input streams and writes them to its output stream.

┌───────────────┐ ┌───────────────┐ ┌───────────────┐ ┌───────────────┐
│ ├────�│ ├─────�│ locate 36.4 ├───�│ │
│ < master file │ │ a: fanout ├───┐ │ /1956/ │ │ > 1956 data a │
│ │ │ ├─┐ │ │ │ │ │
└───────────────┘ │ │ │ │ └───────────────┘ └───────────────┘

└───────────────┘ │ │
│ │ ┌───────────────┐ ┌───────────────┐
│ └─�│ locate 21.4 ├───�│ │
│ │ /MALE/ │ │ > male data a │
│ │ │ │ │
│ └───────────────┘ └───────────────┘
│
│ ┌───────────────┐ ┌───────────────┐
└───�│ locate 45.2 ├───�│ │

│ /NY/ │ │ > ny data a │
│ │ │ │
└───────────────┘ └───────────────┘

Figure 169. Map of FANOUT Example Using a Tertiary Stream

/* FANOUT example */
'pipe (endchar ?)',

'< master file', /* Read master file */
'| a: fanout', /* Copy records to all output streams */
'| locate 36.4 /1956/', /* Locate everyone born in 1956 */
'| > 1956 data a', /* Write records to file */
'?',
'a:',
'| locate 21.4 /MALE/', /* Locate all males */
'| > male data a', /* Write records to file */
'?',
'a:',
'| locate 45.2 /NY/', /* Locate all NY residents */
'| > ny data a' /* Write records to file */

Figure 170. FANOUT Example Using a Tertiary Stream

Multistream Pipelines

Chapter 6. Multistream Pipelines 117

Figure 172 shows the PIPE command to do it.

The CMS stage issues a LISTFILE command that puts a list of all files on file mode
A in the pipeline. The next stage, LOCATE, finds the files having a file type of
EXEC. LOCATE writes matching records to its primary output stream. These
records flow into FANINANY. LOCATE writes records that do not match to its
secondary output stream. A second pipeline, which begins with a stage containing
only the label a, processes the rejects.

The second pipeline looks for any SCRIPT files, again with a LOCATE stage. Any
records that match are sent to the next stage. The next stage contains the label f.
This connects the pipeline to the secondary input of FANINANY.

FANINANY reads records from its primary and secondary inputs in whatever order
they arrive. FANINANY writes all records to its primary output. In effect, FANINANY
combines its two input streams. The next stage, a > stage, writes them to a file.

The records in WANTED FILES are in the same relative order as they were in the
output from the CMS LISTFILE command. This is because the multistream portion
of this pipeline contains only a LOCATE stage and LOCATE does not delay the
records. We will talk about delaying the records later in this chapter. Use SORT
after FANINANY if you wish the lines in a specific order.

Identifying Streams
In the operands of some stages that we’ll be discussing, you’ll need to refer to
specific streams. So far we’ve been referring to streams as primary input streams,
secondary input streams, and so on. However, these terms cannot be used as
stage operands. Instead, we use stream numbers or stream names as stage
operands to identify a particular stream.

┌──────────────┐ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐
│ cms listfile ├──�│ a: locate ├────────────────────�│ f: faninany ├───�│ > WANTED │
│ │ │ 10.5 /EXEC /│ │ │ │ FILES A │
│ │ │ ├┐ ┌�│ │ │ │
└──────────────┘ └──────────────┘│ │ └──────────────┘ └──────────────┘

│ │
│ ┌──────────────┐│
└─�│ locate 10-16 ├┘

│ /SCRIPT / │
│ │
└──────────────┘

Figure 171. Map of FANINANY Example

/* LFD EXEC -- a FANINANY Example */
'PIPE (endchar ?)',

'cms listfile * * a (noheader label', /* Put list in pipeline */
'| a:locate 10.5 /EXEC /', /* Find the execs */
'| f:faninany', /* Combine the streams */
'| > WANTED FILES A', /* Write the list in a file */
'?', /* non-EXEC file types go here */
'a:',
'| locate 10-16 /SCRIPT /', /* Find any SCRIPT files */
'| f:' /* Route them to FANINANY */

Figure 172. LFD EXEC: A FANINANY Example

Multistream Pipelines

118 z/VM: CMS Pipelines User’s Guide

Stream Numbers
Stream numbers apply to a single stage. Each stage has a primary stream, which is
stream 0. If the stage also uses a secondary stream, that stream number is 1. A
tertiary stream is number 2, and so on. When several streams are fed into a stage
or flow out of a stage, the pipelines are associated with streams in the order in
which the pipelines are written. For example, the FANOUT stage in the following
example uses four output streams: the primary and three others. The primary
stream is stream 0. The other pipelines are connected to streams in the order that
the pipelines are written:
/* FANOUT using four output streams */
'pipe (endchar ?)',

'< master file',
'| a: fanout', /* Primary stream (stream 0) */
'| > all data a',
'?',
'a:', /* This LOCATE stage is connected to */
'| locate 36.4 /1990/', /* FANOUT's output stream 1 */
'| > 1990 data a',
'?',
'a:', /* This LOCATE stage is connected to */
'| locate 21.4 /MALE/', /* FANOUT's output stream 2 */
'| > male data a',
'?',
'a:', /* This LOCATE stage is connected to */
'| locate 45.2 /NY/', /* FANOUT's output stream 3 */
'| > ny data a'

A map of the pipeline, with FANOUT’s stream numbers, is shown in Figure 173.

Notice that all the other stages have connections to only their primary input and
output streams (stream 0).

Stream Names
A stream name is a stream identifier that assigns a symbolic name to a stream. You
name a stream to avoid keeping track of its stream number. Instead of using a
stream number as an operand on a stage that combines streams, you can refer to
that stream by the stream name you have assigned.

You may name a stream on the PIPE command, and on the ADDPIPE and
CALLPIPE subcommands like this: add an identifier to the label by writing the label
(in this case a), immediately followed by a period (.) and up to 4 alphabetic

┌───────────────┐ ┌──────────┐ ┌─────────────────┐
│ < master file ├─�│ 0 0 ├─────�│ > all data a │
└───────────────┘ │a: fanout │ └─────────────────┘

│ │
│ │ ┌─────────────────┐ ┌─────────────────┐
│ 1 ├─────�│ locate /1990/ ├─�│ > 1990 data a │
│ │ └─────────────────┘ └─────────────────┘
│ │
│ │ ┌─────────────────┐ ┌─────────────────┐
│ 2 ├─────�│ locate /MALE/ ├─�│ > male data a │
│ │ └─────────────────┘ └─────────────────┘
│ │
│ │ ┌─────────────────┐ ┌─────────────────┐
│ 3 ├─────�│ locate /NY/ ├─�│ > ny data a │
└──────────┘ └─────────────────┘ └─────────────────┘

Figure 173. Map of Pipeline Showing Stream Numbers

Multistream Pipelines

Chapter 6. Multistream Pipelines 119

characters or a combination of alphabetic characters and digits that includes at
least one alphabetic character. A stream identifier must be immediately followed by
a colon with no intervening blanks.

Simpler rules apply to the ADDSTREAM subcommand, where you name a stream
as described above, but without the surrounding label or colon. For instance:
a.mstr:

assigns the symbolic name mstr to a stream that can be referenced by a stage.
See Figure 177 on page 121 for an example that uses a stream number to identify
the primary input stream and a stream name to identify the secondary input stream.

FANIN Stage
Like FANINANY, FANIN reads records from its input streams and writes those
records to its output stream. But, unlike FANINANY, FANIN reads all the records
from one stream before reading records from another. By default, FANIN reads all
of its primary stream, then all of its secondary, and so on, until it has processed all
input streams. Stream numbers or stream names can be entered as operands to
specify a different order, or a subset of all connected streams, or both.

For example, one way to read TEST DATA and TEST1 DATA into a pipeline is
shown in Figure 174. Another way is to use APPEND (see Figure 124 on page 72).

Figure 175 shows the PIPE command.

Figure 175 defines two streams into FANIN. The two input streams are connected
to stages that read the desired files.

To specify a different order, put stream numbers after the FANIN keyword, as
shown in Figure 176. In that example, FANIN reads all of secondary input stream 1,
then all of primary input stream 0. The order in which the files are displayed is
reversed. TEST1 DATA A is displayed followed by TEST DATA A.

┌─────────────────┐ ┌─────────────┐ ┌─────────────────┐
│ < test data a ├───�│ 0 0 ├───�│ 0 console │
└─────────────────┘ │ │ └─────────────────┘

│ f: fanin │
┌─────────────────┐ │ │
│ < test1 data a ├───�│ 1 │
└─────────────────┘ │ │

└─────────────┘

Figure 174. Map of FANIN Example

/* FANIN example showing default stream order */
'pipe (endchar ?)',

'< test data a', /* Read first file */
'| f: fanin', /* Gather streams in default order */
'| console', /* Display files */
'?',
'< test1 data a', /* Read second file */
'| f:' /* Feed it to FANIN (is FANIN stream 1) */

exit rc

Figure 175. FANIN Example Showing Default Stream Order

Multistream Pipelines

120 z/VM: CMS Pipelines User’s Guide

Figure 177 shows the same example with a stream name identifying the secondary
input stream. When you use stream names, you don’t need to keep track of the
stream numbers.

OVERLAY Stage
OVERLAY reads records from all its input streams and creates a record that is the
overlay of them all, in the sense of the XEDIT OVERLAY subcommand. Each
character of the output is from the record from the highest numbered stream with a
nonblank character in the corresponding position. Unlike the XEDIT OVERLAY
command, underscores are treated like any other character.

In the following example, we create lines of text for a direct mail marketing
campaign. The file MASTER FILE contains a mailing list, one name per record. The
file DIRMAIL SCRIPT contains a single line of text to be printed on the envelopes.
We want to overlay the standard line of text with personal information extracted
from the records in MASTER FILE. The line of text contains space for the personal
information.

Figure 178 on page 122 shows a map of what we need to do. The TAKE stage is
used to limit the number of MASTER FILE records being processed. SPECS is
used to extract information from the MASTER FILE records. DUPLICATE duplicates
the record from DIRMAIL SCRIPT. A standard line of text and the desired personal
information flow into OVERLAY. OVERLAY combines the two records and then
CONSOLE displays the results.

/* FANIN example showing stream numbers */
'pipe (endchar ?)',

'< test data a', /* Read first file */
'| f: fanin 1 0', /* Request a specific order on FANIN */
'| console', /* Display files */
'?',
'< test1 data a', /* Read second file */
'| f:' /* Feed it to FANIN (is FANIN stream 1) */

exit rc

Figure 176. FANIN Example Showing Stream Numbers

/* FANIN example showing stream identifiers */
'pipe (endchar ?)',

'< test data a', /* Read first file */
'| f: fanin td1 0', /* Request a specific order on FANIN */
'| console', /* Display files */
'?',
'< test1 data a', /* Read second file */
'| f.td1:' /* Feed it to FANIN as stream TD1 */

exit rc

Figure 177. FANIN Example Showing Stream Identifiers

Multistream Pipelines

Chapter 6. Multistream Pipelines 121

The complete exec, named OVERLAY, is in Figure 179.

The variable numrecs is set to the number of MASTER FILE records to be
processed. This number is used in the TAKE stage and in the DUPLICATE stage to
create the correct number of output records. The SPECS stage extracts a field
containing the year of birth from the MASTER FILE input record. It positions the
year of birth in the output record such that it will overlay the space reserved in the
standard text. Below is an example run. Note the location of the birth dates in the
MASTER FILE records:
pipe < master file | console
SMITH, ROBERT M. MALE 12 06 1956 NY
JONES, MORGAN E. FEMALE 05 05 1959 PA
PUBLIC, WALDO Q. MALE 11 13 1960 CA
Ready;
pipe < dirmail script | console
Were you born in ? Read the important message inside!
Ready;
overlay
Were you born in 1956? Read the important message inside!
Were you born in 1959? Read the important message inside!
Were you born in 1960? Read the important message inside!
Ready;

SPECS, Revisited
SPECS supports multiple input streams with the keyword SELECT. It reads one
record from all its input streams for each output record built.

Use the keyword SELECT followed by a stream number or a stream name
whenever you wish to refer to input data from a record on a stream other than the

┌────────────┐ ┌────────────┐ ┌────────────┐ ┌────────────┐ ┌────────────┐
│ < master ├───�│ take ├───�│ specs ├───�│ over: ├───�│ console │
│ file │ │ │ │ │ ┌─�│ overlay │ │ │
└────────────┘ └────────────┘ └────────────┘ │ └────────────┘ └────────────┘

│
┌────────────┐ ┌────────────┐ │
│ < dirmail ├───�│ duplicate ├───────────────────┘
│ script │ │ │
└────────────┘ └────────────┘

Figure 178. Map of Overlay Example

/* OVERLAY EXEC -- Overlay date for direct mail envelopes */
numrecs=3 /* Number of master file records to do */
'pipe (endchar ?)',

'< master file', /* Read the MASTER FILE */
'| take' numrecs, /* Take desired number of records */
'| specs 36.4 18.4', /* Create output record containing year */
'| over: overlay', /* Overlay year with direct mail script */
'| console', /* Display records */
'?',
'< dirmail script', /* Read the direct mail script */
'| duplicate' numrecs-1, /* Make correct number of copies */
'| over:' /* Feed to secondary input of OVERLAY */

exit rc

Figure 179. Example of OVERLAY Stage: OVERLAY EXEC

Multistream Pipelines

122 z/VM: CMS Pipelines User’s Guide

primary one (or the one selected previously in the list of operands). Subsequent
input fields (up to the next SELECT keyword) refer to the record on the stream
specified.

Figure 181 shows an example that reads a file, changes some of its records, and
then displays the original and changed records side-by-side. (The first 35 characters
of each record are displayed.) The map for the pipeline is in Figure 180.

In the example, the < stage reads the file LEGUMES SCRIPT and writes the
records to its output stream. FANOUT copies the records to its secondary stream,
where CHANGE is used to change some of the data. The SPECS stage puts the
original record and the changed record side-by-side on a single output record,
which CONSOLE then displays.

ELASTIC stage is used between FANOUT and SPECS to avoid a pipeline stall. A
pipeline stall is a new kind of error you can get with multistream pipelines. A stall
occurs when the dispatcher cannot run any of the stages because every stage is
waiting for some other stage to perform some action. CMS Pipelines detects a stall
and ends the PIPE command. (Try running the exec after removing the ELASTIC
stage.)

A stall occurs when ELASTIC is omitted because SPECS needs two records at a
time, but FANOUT writes one record to each output stream in turn. When FANOUT
writes a record to stream 0, it waits for SPECS to read it. SPECS tries to read the
record as well as one on its secondary input stream. But, there isn’t a record
available in the secondary stream—FANOUT cannot write it because it is waiting for
its first output to finish. In effect, SPECS and FANOUT are waiting for each other.

┌────────────┐ ┌────────────┐ ┌────────────┐ ┌────────────┐ ┌────────────┐
│ < legumes ├───�│ a: fanout ├───�│ elastic ├───�│ b: specs ├───�│ console │
│ script │ │ ├─┐ │ │ ┌─�│ │ │ │
└────────────┘ └────────────┘ │ └────────────┘ │ └────────────┘ └────────────┘

│ │
│ ┌────────────┐ │
└─�│ change ├─┘

│ │
└────────────┘

Figure 180. Map of SPECS SELECT Example

/* SELECT EXEC -- Demonstrate SPECS Select operand */
'pipe (endchar ?)',

'< legumes script', /* Read file */
'| a: fanout', /* Copy records to secondary output */
'| elastic', /* Prevent a pipeline stall */
'| b: specs 1-35 1', /* Get data from primary stream (0) */

'select 1', /* Select the secondary stream (1) */
'1-35 41', /* Put data in second half of record */

'| console', /* Display the results */
'?',
'a:', /* Records from FANOUT */
'| change /Pole beans/**Crop Failure**/', /* Change the data */
'| b:' /* Send back to SPECS */

exit rc

Figure 181. Example of SPECS SELECT Operand: SELECT EXEC

Multistream Pipelines

Chapter 6. Multistream Pipelines 123

This causes all the other stages to wait. The < stage waits for FANOUT to read the
next record. The CONSOLE stage waits for SPECS to write a record. Thus, we
have a stall.

By inserting ELASTIC, the stall is avoided. In this case, ELASTIC reads the record
that FANOUT writes to its primary output stream. FANOUT is then free to write a
record to its secondary output stream. When SPECS demands its two records,
CMS Pipelines is able to make the records available.

Here is an example run:
pipe < legumes script | console
Peas
Bush beans
Pole beans
Lima beans
Ready;
select
Peas Peas
Bush beans Bush beans
Pole beans **Crop Failure**
Lima beans Lima beans
Ready;

SPECS stops when all input streams are empty. If one stream empties before the
others, SPECS acts as though that stream contains null records.

COUNT, Revisited
COUNT is an unusual stage. It writes different outputs depending on whether its
secondary stream is connected. Previous COUNT examples showed how COUNT
works when its secondary stream is not connected. It writes a single record
containing the requested tallies to its primary output. When the secondary stream is
connected, however, this is not the case.

When the secondary stream is connected, COUNT copies its input stream, not the
tally record, to its primary output. The record containing the tallies is written to the
secondary output stream instead of the primary.

This makes COUNT far more useful. Look at the WORDUSE EXEC in Figure 182
on page 125. It lists all the words that occur in a file in alphabetic order. Preceding
each word is a number indicating the number of times the word was used. After the
list of words, a summary is displayed that tells the number of lines in the file, the
total number of words, and the number of unique words.

Multistream Pipelines

124 z/VM: CMS Pipelines User’s Guide

After the file is read, the records are translated to lowercase (XLATE) because we
don’t want the results to be case-sensitive. XLATE also eliminates punctuation by
changing characters in the range X'41' to X'7F' to blanks (X'40'). The pair of
apostrophes causes apostrophes to be retained in the records. Otherwise, all
contractions (for example, “don’t”) and some possessives (for example, “Mary’s”)
would be split into two words.

Next the lines and words are counted, but the record containing the count is written
to COUNT’s secondary stream (label a). In this example, the COUNT stage copies
its input to its output stream, for processing by SPLIT.

SPLIT puts each lowercase word on a separate record, so the words can be sorted
by the SORT stage. (SORT sorts records, not items within records.) The COUNT
operand on SORT causes SORT to eliminate duplicate records. The number of
duplicates for each record is placed in the first ten bytes of the output record. The
record itself follows, beginning with byte 11. So, SORT COUNT gives us the
number of times each word was used. (More about SORT is in “Sorting Records
(SORT)” on page 49.)

Each record flowing out of SORT contains a unique word. To count the total number
of unique words, a COUNT LINES stage is added, and the record containing the
count is written to the secondary output (label b:). COUNT passes the records
themselves to the next stage.

The remainder of the first pipeline formats the records, collects the summary
records from the other pipelines, adds a header, and displays everything. The two
other pipelines process records from the two COUNT stages. They add explanatory
text to the counts and send the formatted records back to the first pipeline.

/* WORDUSE EXEC -- Word Use Analyzer */
parse arg fid
'pipe (endchar ?)',

'<' fid, /* Read the file */
"| xlate lower 41-7f 40 ' ' ", /* Translate to lowercase, and get */

, /* rid of punctuation */
'| a: count words lines', /* Count words and lines */
'| split', /* Put one word per record */
'| sort count', /* Sort unique with a count of dups */
'| b: count lines', /* Count the number of unique words */
'| specs 1-10 1 11-* 15', /* Format the sorted records */
'| f: fanin', /* Make sure summary lines at end */
'| literal Times Used Word', /* Write a header */
'| console', /* Display it */
'?',
'a:', /* Process the word and line count */
'| specs /Number of lines: / 1 words2 next write',

'/Total number of words: / 1 words1 next',
'| f:',
'?',
'b:', /* Process the unique word count */
'| specs /Total number of unique words: / 1 words1 next',
'| f:'

Figure 182. WORDUSE EXEC: Example Exec to Analyze Word Use

Multistream Pipelines

Chapter 6. Multistream Pipelines 125

Notice that FANIN is used to collect the records from all three streams. FANINANY
is not used because we want the list of words to precede the summary records.
FANIN guarantees this. Try substituting FANINANY in WORDUSE—the records are
not displayed in the desired order.

Figure 183 shows a sample run of WORDUSE. The input file TEST DATA contains
these lines:
==
Don't worry about me--I can take
care of myself.

MERGE Stage
MERGE copies records from all its input streams to its primary output stream.
MERGE is intended to combine sorted lists such that the output from MERGE is in
order. When the records in the input streams are not sorted, MERGE still combines
the records. In this case, however, the order in which MERGE writes the records is
not predictable. MERGE does not verify that the input streams are sorted.

You can specify column ranges on MERGE in the same way as for SORT. When
column ranges are specified, MERGE orders the records according to the data in
the specified ranges. If you omit column ranges, MERGE uses the whole record to
determine the order.

Figure 184 on page 127 shows the map of a PIPE command that combines the
responses from two CMS LISTFILE commands. Because the responses from CMS
LISTFILE are sorted, the output from MERGE will be in order.

worduse test data
Times Used Word

1 about
1 can
1 care
1 don't
1 i
1 me
1 myself
1 of
1 take
1 worry

Number of lines: 3
Total number of words: 10
Total number of unique words: 10
Ready;

Figure 183. Counting Several Items

Multistream Pipelines

126 z/VM: CMS Pipelines User’s Guide

Figure 185 shows the PIPE command for the above map. The CMS stages list the
files on file mode A and file mode C. These lists are then sorted. The output
streams of both SORT stages are connected to the input streams of MERGE.
Because column ranges are omitted from MERGE, it uses the entire record to
determine the output order. CONSOLE displays the records from MERGE.

The following is an example run of LISTMRG EXEC:
listmrg
$SHRLIS$ XEDIT C2
ADD REXX A1
ADDGROUP HELPRACF C1
ADDUSER HELPRACF C1
ALL NOTEBOOK A0
ALTDSD HELPRACF C1
ALTGROUP HELPRACF C1
ALTSEQ HELPDFSO C1
ALTUSER HELPRACF C1
ASCLM EXEC C1
ASPF EXEC C1
AUTH NOTE A1
AUTHOR REXX A1
AUTHOR T01 A1
AUTHOR T02 A1
AUTHOR T03 A1
AUTHOR T04 A1
AUTOLOG HELPBXF C5...

LOOKUP Stage
LOOKUP matches records in its primary input stream with records in its secondary
input stream and writes matched and unmatched records to different output

┌───────────────┐ ┌───────────────┐ ┌───────────────┐ ┌───────────────┐
│ cms listfile ├──�│ sort ├────�│ g: merge ├────�│ console │
│ │ │ │ ┌──�│ │ │ │
└───────────────┘ └───────────────┘ │ └───────────────┘ └───────────────┘

│
┌───────────────┐ ┌───────────────┐ │
│ cms listfile ├──�│ sort ├─┘
│ │ │ │
└───────────────┘ └───────────────┘

Figure 184. Map of MERGE Example

/* LISTMRG EXEC -- Display merged list of all files on two file modes */
'pipe (endchar ?)',

'cms listfile * * a', /* List all files on first file mode */
'| sort', /* Sort the list */
'| g: merge', /* Merge the sorted lists */
'| console', /* Display the merged and sorted list */
'?',
'cms listfile * * c', /* List all files on second file mode */
'| sort', /* Sort the list */
'| g:' /* Feed to MERGE */

exit rc

Figure 185. MERGE Stage Example: LISTMRG EXEC

Multistream Pipelines

Chapter 6. Multistream Pipelines 127

streams. Whole contents of records are matched by default, or the records are
matched on the basis of a key field (the contents of a specified range of columns in
the records).

Before finding records, LOOKUP builds the reference. It does so by reading all
records on the secondary input stream into a buffer (called the reference). These
records are called master records. LOOKUP discards master records with duplicate
keys while loading the buffer.

After building the reference, LOOKUP reads records from its primary input stream
and looks for a matching record in the set of reference records. The records read
from the primary input stream are referred to as detail records. By default, entire
records are compared, but you can specify column ranges to look for a key.

Upon finding a match, LOOKUP, by default, writes the detail record and the
matching master record to its primary output stream. Use the operand DETAILS to
get just the detail records. If a detail record does not have a matching master
record, LOOKUP writes the detail record to its secondary output stream.

After processing all the detail records, LOOKUP writes all unreferenced master
records to its tertiary output stream. By unreferenced we mean those not matched
by at least one detail record. LOOKUP writes the unreferenced records in
ascending order by their keys.

Figure 186 summarizes the streams used by LOOKUP.

You can see LOOKUP work by executing an exec like the one in Figure 187 on
page 129.

┌────────────┐
Detail in ─────┤ 0 0 ├───── Matching detail and master

│ │
│ LOOKUP │

Master in ─────┤ 1 1 ├───── Unmatched detail
│ │
│ │
│ 2 ├───── Unreferenced master
└────────────┘

Figure 186. Map of LOOKUP Stage

Multistream Pipelines

128 z/VM: CMS Pipelines User’s Guide

In the first pipeline, LITERAL stages are used to create detail records. LOOKUP
writes the matching detail and master records to its primary output stream. SPECS
prefixes the records with identifying text and CONSOLE displays the records.

In the second pipeline, the reference is created. LITERAL stages are used to create
master records. These records flow into the secondary input of LOOKUP. The label
l makes the connection. That same label also makes a connection to the
secondary output stream of LOOKUP. (See “Connecting to Both the Secondary
Input and the Secondary Output” on page 113 for more about this type of
connection.) LOOKUP writes the unmatched detail records to its secondary output.
SPECS prefixes the records with identifying text, and CONSOLE displays them.

In the third pipeline, the label l connects the tertiary output of LOOKUP. LOOKUP
writes unreferenced master records to its tertiary output. Again SPECS and
CONSOLE are used to display the records.

The following example shows the response from LOOKSTR:
lookstr
Secondary: snowmobile
Primary: car
Primary: car
Tertiary: boat
Tertiary: truck
Ready;

LOOKUP writes snowmobile to its secondary output stream because there isn’t a
matching reference record. The record car is written twice: the first record is the
detail record, while the second is the matching master record. The records boat and
truck are unreferenced master records. LOOKUP writes unreferenced master
records to its tertiary output stream.

Another LOOKUP example is shown in Figure 189 on page 130. (A map is shown
in Figure 188 on page 130.) The example (VALIDATE REXX) shows the use of
column ranges on LOOKUP to identify a search key. It also shows the use of the

/* LOOKSTR EXEC -- demonstrate LOOKUP streams */
'pipe (endchar ?)',

'literal car'||, /* Record to search for... */
'| literal snowmobile'||, /* Another record to search for... */
'| l: lookup', /* Look for the records */
'| specs /Primary: / 1', /* LOOKUP writes matching detail and */

'1-* next', /* master records to primary output */
'| console', /* Display records */
'?',
'literal truck'||, /* Master record for reference */
'| literal boat'||, /* Master record for reference */
'| literal car'||, /* Master record for reference */
'| l:', /* Connect to secondary input & output */
'| specs /Secondary: / 1', /* LOOKUP writes unmatched detail to */

'1-* next', /* its secondary output stream */
'| console', /* Display unmatched detail records */
'?',
'l:', /* LOOKUP writes unreferenced master */
'| specs /Tertiary: / 1', /* records to its tertiary output */

'1-* next', /* in ascending order */
'| console' /* Display unreferenced master records */

exit 0

Figure 187. LOOKUP Stage Example: LOOKSTR EXEC

Multistream Pipelines

Chapter 6. Multistream Pipelines 129

DETAILS operand. When DETAILS is specified, LOOKUP writes matching detail
records to its primary output stream, but not the corresponding master record.

VALIDATE REXX checks the authorization of the user ID in the first eight columns
of the input record against the list of authorized users stored in the file BONA FIDE.
Unauthorized requests are appended to a log file.

The first pipeline consists of LOOKUP, an input connector, and an output connector.
VALIDATE REXX expects its input stream to contain records to be validated. Those
that are valid (that is, found in the reference) are written to the output stream. The
column range 1.8 is used to define the key to be used in the search. DETAILS is
specified to avoid having the master record written to the output stream.

The second pipeline reads the file BONA FIDE, prepares the records, and writes
those records to LOOKUP’s secondary input stream. LOOKUP builds the reference
from these records. LOOKUP writes unmatched detail records to its secondary
output. These records flow into the >> stage and are written to the file NOT VALID
A.

In the following example, uppercase user IDs are used because LOOKUP is
case-sensitive.
pipe < bona fide | console
Bill
Ted
Denise
Mike
Ready;
pipe literal TED This should get through. | validate | console
TED This should get through.

┌─────────────┐
Detail ───────�│ l: lookup ├──────� Matching
Records ┌─�│ ├┐ Detail

│ └─────────────┘│ Records
│ │
│ │
│ │
│ │

┌─────────────┐ ┌─────────────┐ ┌─────────────┐│ │ ┌─────────────┐
│ < bona fide ├──�│ xlate upper ├──�│ pad 8 ├┘ └─�│ >> not │
│ │ │ │ │ │ │ valid a │
└─────────────┘ └─────────────┘ └─────────────┘ └─────────────┘

Figure 188. Map of VALIDATE REXX

/* VALIDATE REXX -- Ensure commands are from authorized users */
'callpipe (endchar ?)',

'*:', /* Read input from calling pipeline */
'| l: lookup 1.8 details', /* Search reference */
'| *:', /* Pass good ones on */
'?',
'< bona fide', /* Read list of authorized users */
'| xlate upper', /* Make them uppercase */
'| pad 8', /* Pad them to 8 characters */
'| l:', /* Feed to LOOKUP and get unmatched */
'| >> not valid a' /* Write unmatched data */

exit rc

Figure 189. VALIDATE REXX: Example of LOOKUP

Multistream Pipelines

130 z/VM: CMS Pipelines User’s Guide

Ready;
pipe literal BOGUS This should fail. | validate | console
Ready;
pipe < not valid | console
BOGUS This should fail.
Ready;

Pipeline Stalls
With multistream pipelines you may see a new kind of error: a stall. A stall occurs
when the dispatcher cannot run any of the stages because every stage is waiting
for some other stage to perform some function. Usually stalls are caused by stages
that read multiple input streams in a particular order or that need records to be
available on more than one stream at the same time. A stall occurs when the
preceding stages do not deliver records in the order needed or do not provide
multiple records concurrently.

When a stall occurs, you receive a return code of -4095, messages saying the
pipeline is stalled, and messages listing the state of all the stages in the pipeline. A
dump of the control block structure is automatically written to a file named
PIPDUMP LISTnnnn (where nnnn is a number). This file is intended for use by
service personnel.

What can you do when a pipeline stalls? First, look at any stages that have multiple
input streams. Of these stages, identify any stages that need records in a particular
order (such as FANIN) or that need more than one record at a time (such as
SPECS and OVERLAY).

Next, analyze the pipeline to see what order the records are being delivered to
these stages. You need to look at the stages that are supplying records. It helps to
draw a map of the pipeline. Look for earlier stages that have secondary outputs
connected. These stages often deliver records in a particular order and that order is
not what the stage combining the streams needs.

After finding the problem, you can either change the order of delivery of the
records, or you can change the stage combining the streams to match the supplied
order.

A common stall is shown in Figure 190. There may be many other stages between
FANOUT and FANIN, but in many cases these other stages don’t matter. It is the
FANOUT/FANIN combination that causes the problem. FANIN needs to read all the
records of one stream before reading the next. FANOUT, however, writes one
record to each of its output streams.

FANOUT writes a record on its output stream 0. FANIN reads this record. Then
FANOUT tries to write a copy of the record on its output stream 1. It waits for

Other ┌─────────┐ ┌─────────┐ Other
stages ──┤ fanout 0├───────�│0 fanin ├── stages

│ │ │ │
│ 1├───────�│1 │
└─────────┘ └─────────┘

Figure 190. Example Stall Involving a Stage that Needs Records in Order

Multistream Pipelines

Chapter 6. Multistream Pipelines 131

FANIN to read the record, but FANIN is waiting for FANOUT to write another record
on stream 0. FANIN will not read from its input stream 1 until input stream 0 is
empty. The pipeline is stalled.

Figure 191 shows one way to fix the stall. A BUFFER stage is added. BUFFER
doesn’t write any records to its output stream until it has read all the records in its
input stream. So, when FANOUT writes a record to its output stream 0, FANIN
reads that record. When it writes to stream 1, the BUFFER stage reads the record.
After FANOUT writes its last record to stream 1, BUFFER writes the records to its
output stream. Because FANIN has, by this time, processed all the records in its
input stream 0, it can now process the records supplied by BUFFER on stream 1.

You can also fix the stall by replacing the BUFFER stage in Figure 191 with another
built-in stage called ELASTIC. The ELASTIC stage works like BUFFER. However,
ELASTIC reads only as many records into a buffer as necessary to prevent a stall.

Another solution is to substitute FANINANY for FANIN. FANINANY does not care
about the order in which records are delivered to it. Of course, the order of records
flowing out of FANINANY is not the same order that FANIN would have provided.
So, FANINANY might not be an acceptable solution.

If FANINANY fixes the stall, but delivers the records in the wrong order, you might
be able to work around it. You could, in some cases, use SPECS with a RECNO
operand to put numbers on the records. After the records are processed and
combined by FANINANY, add a SORT stage to put the records in order. Then use
another SPECS stage to remove the record numbers.

Figure 192 shows another common stall. In this case a SPECS stage contributes to
the problem. It expects two records at a time.

In this case, FANOUT writes a record on its output stream 0. It is waiting for its
OUTPUT operation to finish. SPECS tries to read records from both of its input
streams. Because FANOUT hasn’t yet written a record on its output stream 1,
SPECS waits. While SPECS waits, FANOUT’s OUTPUT operation cannot complete.
So, it cannot write a record on its output stream 1. The pipeline is stalled.

Other ┌─────────┐ ┌─────────┐ Other
stages ──┤ fanout 0├──────────────────────────�│0 fanin ├── stages

│ │ ┌──────────┐ │ │
│ 1├───────�│ buffer ├──────�│1 │
└─────────┘ │ │ └─────────┘

│ │
└──────────┘

Figure 191. Fixing a Stall with a BUFFER Stage

Other ┌─────────┐ ┌─────────┐ Other
stages ──┤ fanout 0├───────�│0 specs ├── stages

│ │ │ │
│ 1├───────�│1 │
└─────────┘ └─────────┘

Figure 192. Example Stall Involving a Stage that Needs Multiple Records

Multistream Pipelines

132 z/VM: CMS Pipelines User’s Guide

Figure 193 shows a solution. HOLD REXX (see Figure 130 on page 84) breaks the
stall. HOLD simply reads a record from its input stream and writes it to its output
stream. By doing this, HOLD lets FANOUT complete its OUTPUT operation on
stream 0. FANOUT can then write a record on its output stream 1. When SPECS is
dispatched, the two records it needs are available.

In some situations, you may be able to fix a stall by using either HOLD REXX or a
BUFFER stage. When deciding which one to use, remember that BUFFER holds all
the records it reads in virtual storage while HOLD REXX does not. If you want to
conserve virtual storage, HOLD REXX is a better choice.

BUFFER is not the only stage that reads all records from its input stream before
writing them. SORT, by the nature of its processing, also does this. You may also
have some user-written stages at your disposal that buffer records. Assuming you
need the functions provided by these stages, they can be used instead of BUFFER
to break stalls or to avoid stalls when designing the pipeline.

Although the stalls we have shown involved FANOUT stages, a FANOUT stage is
not a prerequisite for a stall. Consider the example in Figure 194. In this case, a
LOCATE stage is involved.

Because of the way the LOCATE is connected, only one record at a time is
delivered to SPECS. To fix the stall you need to add two BUFFER stages: one
between LOCATE and SPECS and the other between CHANGE and SPECS. All
records that flow on either stream are held by the BUFFER stages until all the input
is read. Then SPECS can read the records from the BUFFER stages two at a time.
If one stream has more records than the other, the stream with fewer records will
be disconnected from SPECS when all the records are read. (SPECS can handle
this condition.)

┌─────────┐
│ hold │

Other ┌─────────┐ │ │ ┌─────────┐ Other
Stages ──┤ fanout 0├───────�│ ├────────�│0 specs ├── Stages

│ │ └─────────┘ │ │
│ 1├───────────────────────────�│1 │
└─────────┘ └─────────┘

Figure 193. Fixing a Stall with HOLD REXX

Other ┌─────────┐ ┌─────────┐ Other
Stages ──┤ locate 0├────────────────────�│0 specs ├── Stages

│ │ │ │
│ 1├─┐ ┌───�│1 │
└─────────┘ │ │ └─────────┘

│ │
│ ┌─────────┐ │
└─�│ change ├─┘

│ │
│ │
└─────────┘

Figure 194. Example Stall Involving a LOCATE Stage

Multistream Pipelines

Chapter 6. Multistream Pipelines 133

Maintaining the Relative Order of Records
Although the order in which the dispatcher runs stages is unpredictable, in certain
situations the relative output order of records involving a multistream pipeline is
predictable. This section explains how to write multistream pipelines so the order of
the output records is predictable. The following concepts are discussed:
v How each stage of a pipeline runs
v How stages delay the records
v How to predict relative record order.

How Each Stage of a Pipeline Runs
As we discussed in “The CMS Pipelines Environment” on page 78, a stage does
not run from start to finish once the dispatcher gives it control. Once a stage has
written a record to its output stream, that stage is blocked, which means it cannot
run again until the stage connected to its output stream consumes the record. A
stage consumes a record when it reads a record from its input stream and removes
the record from that input stream. Once a record has been consumed by a stage, it
cannot be read again by that stage. A stage is also blocked when it is waiting to
read a record, but no records are currently available.

To apply this concept to a user-written stage, a stage that issues an OUTPUT
pipeline subcommand is blocked until the stage connected to its output stream
consumes the record with a READTO pipeline subcommand. Although the PEEKTO
pipeline subcommand can also be used to read records, PEEKTO does not
consume records from its input stream.

How Stages Delay the Records
Let’s consider the following command:
PIPE A | B | C

If stage A writes a record to its output stream, stage A stops running until the record
is consumed by stage B. Therefore, stage B determines when stage A can continue
to run. Stage B can process its records in one of the following ways:

1. It can read a record and remove it from its input stream. This allows stage A to
continue running. This is how READTO processes records.

2. It can read a record without removing the record from its input stream. This
prevents stage A from running. This is how PEEKTO processes records.

This implies that there are two methods for writing stages. The first method delays
the records. The second method does not delay the records. When a stage delays
the records, a record’s progress through the stage is buffered, or held up. This
occurs when the output of stage A is consumed by stage B allowing stage A to
resume running before stage B writes its output. When a stage does not delay the
records, the records can progress through the stage without being held up or
buffered.

To determine whether a built-in stage delays the records, refer to the usage notes
section of the stage’s description in the z/VM: CMS Pipelines Reference. Don’t
confuse the DELAY stage with delaying the records.

To write a user-written stage that does not delay the records, use the following
logic:
1. Use PEEKTO to read a record without consuming it
2. Process the contents of the record
3. Use OUTPUT to write one or more records to the output stream

Multistream Pipelines

134 z/VM: CMS Pipelines User’s Guide

4. Use READTO to consume the record previously read with PEEKTO
5. Repeat steps 1-4 as needed.

How to Predict Relative Record Order
In order to maintain the relative order of records in a set of multistream pipelines,
the pipelines must:

v Start at one common stage

v Be split into multiple pipelines using only stages that do not delay the records

v Contain only stages that do not delay the records

v Be combined into a single stream using a stage that combines multiple streams
as records arrive (for example, FANINANY).

By using the process shown in the following examples, you can determine how
records flow through a set of pipelines.

Note: The examples assume a specific order of execution of the stages involved.
The actual execution order as determined by the dispatcher may be different.
You can trace the PIPE command to see the actual order in which the
dispatcher runs the stages. Note that a subsequent trace of the same
command may show the stages running in a different order.

Example 1 - Not Delaying the Records
Look at the following PIPE command (a map is shown in Figure 195):
/* NODELAY EXEC */
'pipe (endchar ?)',

'< DELAY INPUT', /* Read DELAY INPUT file */
'| l: locate /a/', /* Find records containing a */
'| xlate upper', /* translate records to uppercase */
'| f: faninany', /* combine streams back together */
'| > DELAY OUTPUT A', /* write result to DELAY OUTPUT A */
'?', /* beginning of second pipeline */
'l:', /* define 2ndary output for locate */
'| f:' /* define 2ndary input for faninany */

Assume that the file DELAY INPUT contains the following records:
a1
b2
a3
b4

When you run NODELAY EXEC, conceptually the following takes place:

1. The < stage reads the first record a1 from the disk or directory and writes the
record to its output stream. The < stage is now blocked until its output record
is consumed.

2. The LOCATE stage starts running. LOCATE finds the record a1 available and
processes it. It searches the record for an a and then selects an output stream.

┌────────────┐ ┌────────────┐ ┌────────────┐ ┌────────────┐ ┌────────────┐
│ < 0├───�│0 locate 0├───�│0 xlate 0├───�│0 faninany 0├───�│0 > │
│ │ │ 1├─┐ │ │ ┌─�│1 │ │ │
└────────────┘ └────────────┘ │ └────────────┘ │ └────────────┘ └────────────┘

│ │
│ │
└─────────────────┘

Figure 195. Map of NODELAY EXEC

Multistream Pipelines

Chapter 6. Multistream Pipelines 135

The record contains an a, so LOCATE writes the record a1 to its primary
output stream. Because LOCATE has not consumed the < stage’s output, <
still cannot run. The LOCATE stage is now blocked until its output record is
consumed.

3. The XLATE stage starts running. XLATE looks at its input stream and obtains
the record a1. XLATE reads the record, translates it to uppercase, and writes
the result to its output stream. Because XLATE has not consumed the
LOCATE stage’s output, LOCATE still cannot run. The XLATE stage is now
blocked until its output record is consumed.

4. The FANINANY stage starts running. It finds a record available on its primary
input stream. FANINANY looks at the record and copies it to its output stream.
Because FANINANY has not consumed the XLATE stage’s output, XLATE still
cannot run. The FANINANY stage is now blocked until its output record is
consumed.

5. The > stage starts running. It looks at its input stream and finds the A1 record.
> writes the record to the file. Because there is nothing attached to its output
stream, > writes no output record. > consumes the A1 record from its input
stream making FANINANY eligible to run. > then looks for another input
record. > cannot run until another record is ready for it.

6. FANINANY resumes, consumes its input, and then looks for another input
record. FANINANY cannot run until another record is ready for it.

7. XLATE resumes, consumes its input, and looks for another input record.
XLATE cannot run until another record is ready for it.

8. LOCATE resumes, consumes its input, and looks for another input record.
LOCATE cannot run until another record is ready for it.

9. < resumes, reads the record b2 from the disk or directory, and writes the
record to its output stream. The < stage is now blocked until its output record
is consumed.

10. The LOCATE stage resumes and it looks at its input stream. LOCATE finds the
record b2 available and processes it. It searches the record for an a and then
selects an output stream. The record does not contain a so LOCATE writes the
record to its secondary output stream. LOCATE has not consumed the <
stage’s output, so < still cannot run. The LOCATE stage is now blocked until
its output record is consumed.

11. FANINANY resumes. It finds a record available on its secondary input stream.
FANINANY looks at the record and copies it to its output stream. FANINANY
has not consumed the LOCATE stage’s output, so LOCATE still cannot run.
The FANINANY stage is now blocked until its output record is consumed.

12. > resumes and finds the b2 record. > writes the record to the file and then to
its output stream. > consumes the b2 record from its input stream making
FANINANY eligible to run. > then looks for another input record. > cannot run
until another record is ready for it.

13. FANINANY resumes, consumes its input, and looks for another input record.
FANINANY cannot run until another record is ready for it.

14. LOCATE resumes, consumes its input, and looks for another input record.
LOCATE cannot run until another record is ready for it.

At this point, the following records have been written to the output file:
A1
b2

The process continues for the a3 and b4 records until the output file contains:

Multistream Pipelines

136 z/VM: CMS Pipelines User’s Guide

A1
b2
A3
b4

Then the following happens:

1. < attempts to read a record and finds that there are no more records in the file.
< ends causing its output stream to be disconnected. Because this stream is
disconnected, the LOCATE stage knows the end of the file is reached and the
stage becomes eligible to run.

2. LOCATE determines that its input stream is disconnected. LOCATE ends
causing its output streams to be disconnected. Because these streams are
disconnected, the XLATE stage knows the end of the file is reached and the
stage becomes eligible to run.

3. XLATE determines that its input stream is disconnected. XLATE ends causing
its output stream to be disconnected. Because this stream is disconnected, the
FANINANY stage knows the end of the file is reached and the stage becomes
eligible to run.

4. FANINANY determines that its input streams are disconnected. FANINANY ends
causing its output stream to be disconnected. Because this stream is
disconnected, the > stage knows the end of the file is reached and the stage
becomes eligible to run.

5. > determines that its input stream is disconnected and ends.

Now the entire set of pipelines has completed processing and the PIPE command
ends. Note that every stage in this example looked at its input record, processed it,
wrote it out, and then consumed the input record. None of the stages in this
example delayed the records.

Once again, remember that the actual order in which the stages run is
unpredictable, but the order of the resulting output records is the same.

Example 2 - Can Delay the Records
If you have a multistream pipeline that contains a stage that can delay the records,
the order may be unpredictable.

For example, look at the following PIPE command (a map is shown in Figure 196
on page 138):
/* CANDELAY EXEC */
'pipe (endchar ?)',

'< DELAY INPUT', /* read DELAY INPUT file */
'| l: locate /a/', /* find records containing a */
'| copy', /* delay by one record */
'| f: faninany', /* combine records back together */
'| > DELAY OUTPUT A', /* write result to DELAY OUTPUT A */
'?', /* start of second pipeline */
'l:', /* define secondary output for locate */
'| f:' /* define secondary input for faninany */

Multistream Pipelines

Chapter 6. Multistream Pipelines 137

Assume that the file DELAY INPUT contains the following records:
a1
b2
a3
b4

When you run CANDELAY EXEC, conceptually the following takes place:

1. The < stage reads the first record a1 from the disk or directory and writes the
record to its output stream. The < stage is now blocked until its output record is
consumed.

2. The LOCATE stage starts running. LOCATE finds the record a1 available and
processes it. It searches the record for an a and then selects an output stream.
The record contains an a, so LOCATE writes the record a1 to its primary output
stream. Because LOCATE has not consumed the < stage’s output, < still cannot
run. The LOCATE stage is now blocked until its output record is consumed.

3. The COPY stage starts running. COPY looks at its input stream and obtains the
record a1. COPY saves the record a1 and consumes it. At this point LOCATE
can run or COPY can continue running.

If LOCATE runs next, it will consume its input enabling < to run. This enables
LOCATE to process the b2 record and write the record to its secondary output
stream which would cause b2 to arrive at FANINANY before the a1 record.

If COPY continues to run, it will write the a1 record to its primary output stream
which causes a1 to be the next record processed by FANINANY.

Because it is unpredictable whether LOCATE or COPY will run, the order of
records in the file DELAY OUTPUT is also unpredictable.

Processing continues until the set of pipelines completes.

Example 3 - Delaying the Records
There are cases in which a multistream pipeline contains stages that delay the
records, but the order of the output records can still be predicted. For example, look
at the following PIPE command (a map is shown in Figure 197 on page 139):
/* DELAY EXEC */
'pipe (endchar ?)',

'< DELAY INPUT', /* read DELAY INPUT file */
'| l: locate /a/', /* find records that contain an a */
'| join 1', /* join pairs of records */
'| f: faninany', /* combine records back together */
'| > DELAY OUTPUT A', /* write result to DELAY OUTPUT A */
'?', /* start of second pipeline */
'l:', /* define secondary output for LOCATE */
'| f:' /* define secondary input for FANINANY */

┌────────────┐ ┌────────────┐ ┌────────────┐ ┌────────────┐ ┌────────────┐
│ < 0├───�│0 locate 0├───�│0 copy 0├───�│0 faninany 0├───�│0 > │
│ │ │ 1├─┐ │ │ ┌─�│1 │ │ │
└────────────┘ └────────────┘ │ └────────────┘ │ └────────────┘ └────────────┘

│ │
│ │
└─────────────────┘

Figure 196. Map of CANDELAY EXEC

Multistream Pipelines

138 z/VM: CMS Pipelines User’s Guide

Assume that the V-format file DELAY INPUT contains the following records:
a1
b2
a3
b4

When you run DELAY EXEC, conceptually the following takes place:

1. < reads the first record a1 from the disk or directory and writes the record to its
output stream. The < stage is now blocked until its output record is consumed.

2. The LOCATE stage starts running. LOCATE finds the record a1 available and
processes it. It searches the record for an a and then selects an output stream.
The record contains an a, so LOCATE writes the record a1 to its primary
output stream. Because LOCATE has not consumed the < stage’s output, <
still cannot run. The LOCATE stage is now blocked until its output record is
consumed.

3. The JOIN stage starts running. JOIN looks at its input stream and obtains the
record a1. Because JOIN needs two input records to build an output record,
JOIN saves the contents of the record, consumes the record, and looks for
another input record. JOIN can not run until another record is ready for it.

4. LOCATE resumes, consumes its input, and looks for another input record.
LOCATE cannot run until another record is ready for it.

5. < resumes, reads the record b2 from the disk or directory, and writes the
record to its output stream. The < stage is now blocked until its output record
is consumed.

6. The LOCATE stage resumes and it looks at its input stream. LOCATE finds the
record b2 available and processes it. It searches the record for an a and then
selects an output stream. The record does not contain a so LOCATE writes the
record to its secondary output stream. LOCATE has not consumed the <
stage’s output, so < still cannot run. The LOCATE stage is now blocked until
its output record is consumed.

7. The FANINANY stage starts running. It finds a record available on its
secondary input stream. FANINANY looks at the record and copies it to its
output stream. Because FANINANY has not consumed the LOCATE stage’s
output, LOCATE still cannot run. The FANINANY stage is now blocked until its
output record is consumed.

8. The > stage starts running. It looks at its input stream and finds the b2 record.
> writes the record to the file. Because there is nothing attached to its output
stream, > writes no output record. > consumes the A1 record from its input
stream making FANINANY eligible to run. > then looks for another input
record. > cannot run until another record is ready for it.

9. FANINANY resumes, consumes its input, and then looks for another input
record. FANINANY cannot run until another record is ready for it.

10. LOCATE resumes, consumes its input, and looks for another input record.
LOCATE cannot run until another record is ready for it.

┌────────────┐ ┌────────────┐ ┌────────────┐ ┌────────────┐ ┌────────────┐
│ < 0├───�│0 locate 0├───�│0 join 0├───�│0 faninany 0├───�│0 > │
│ │ │ 1├─┐ │ │ ┌─�│1 │ │ │
└────────────┘ └────────────┘ │ └────────────┘ │ └────────────┘ └────────────┘

│ │
│ │
└─────────────────┘

Figure 197. Map of DELAY EXEC

Multistream Pipelines

Chapter 6. Multistream Pipelines 139

11. < reads the next record a3 from the disk or directory and writes the record to
its output stream. The < stage is now blocked until its output record is
consumed.

12. The LOCATE stage resumes and it looks at its input stream. LOCATE finds the
record a3 available and processes it. It searches the record for an a and then
selects an output stream. The record contains an a, so LOCATE writes the
record to its primary output stream. LOCATE has not consumed the < stage’s
output, so < still cannot run. The LOCATE stage is now blocked until its output
record is consumed.

13. JOIN resumes running. It finds a record available on its input stream. JOIN
combines the record with the a1 record, which it saved, and writes the
combined record a1a3 to its output stream. JOIN has not consumed the
LOCATE stage’s output, so LOCATE still cannot run. The JOIN stage is now
blocked until its output record is consumed.

14. FANINANY resumes. It finds a record available on its primary input stream.
FANINANY looks at the record and copies it to its output stream. FANINANY
has not consumed the JOIN stage’s output, so JOIN still cannot run. The
FANINANY stage is now blocked until its output record is consumed.

15. > resumes and finds the a1a3 record. > writes the record to the file and then to
its output stream. > consumes the a1a3 record from its input stream making
FANINANY eligible to run. > then looks for another input record. > cannot run
until another record is ready for it.

16. FANINANY resumes, consumes its input, and looks for another input record.
FANINANY cannot run until another record is ready for it.

17. JOIN resumes, consumes its input, and looks for another input record. JOIN
cannot run until another record is ready for it.

18. LOCATE resumes, consumes its input, and looks for another input record.
LOCATE cannot run until another record is ready for it.

At this point, the following records have been written to the output file:
b2
a1a3

The process continues for the b4 record until the output file contains:
b2
a1a3
b4

Then the following happens:

1. < attempts to read a record and finds that there are no more records in the file.
< ends causing its output stream to be disconnected. Because this stream is
disconnected, the LOCATE stage knows the end of the file is reached and the
stage becomes eligible to run.

2. LOCATE determines that its input stream is disconnected. LOCATE ends
causing its output streams to be disconnected. Because these streams are
disconnected, the JOIN stage knows the end of the file is reached and the
stage becomes eligible to run.

3. JOIN determines that its input stream is disconnected. JOIN ends causing its
output stream to be disconnected. Because this stream is disconnected, the
FANINANY stage knows the end of the file is reached and the stage becomes
eligible to run.

Multistream Pipelines

140 z/VM: CMS Pipelines User’s Guide

4. FANINANY determines that its input streams are disconnected. FANINANY ends
causing its output stream to be disconnected. Because this stream is
disconnected, the > stage knows the end of the file is reached and the stage
becomes eligible to run.

5. > determines that its input stream is disconnected and ends.

Now the entire set of pipelines has completed processing and the PIPE command
ends.

Pipeline Subcommands for Multistream Pipelines
�PI�

This section describes several pipeline subcommands you can use when writing
stages that process multiple streams:

v SELECT—selects the input and output stream to be processed by subsequent
pipeline subcommands.

v MAXSTREAM—returns the number of the highest stream defined in the PIPE
command.

v STREAMNUM—validates a stream number.

v ADDPIPE—adds a pipeline to the set of running pipelines.

v SEVER—disconnects the current stream.

CALLPIPE is also revisited.

On the subcommands, you can identify input and output streams by keywords and
in some instances by stream numbers or names.

SELECT Pipeline Subcommand
READTO, OUTPUT, and PEEKTO subcommands act on the currently selected
stream. Until now, we haven’t been selecting streams. By default, CMS Pipelines
has been using stream 0 (the primary input and output stream) for READTOs,
OUTPUTs, and PEEKTOs. To select a different stream to be used on following
pipeline subcommands, use the SELECT pipeline subcommand.

SELECT selects the stream identified by a keyword (INPUT, OUTPUT, or BOTH)
followed by the stream number or name. Figure 198 on page 142 shows how to use
SELECT. It shows a stage that reads records from its primary input stream and
writes those records to a primary and a secondary output stream (in a manner
similar to FANOUT).

Multistream Pipelines

Chapter 6. Multistream Pipelines 141

The select input subcommand in MYFANOUT REXX is not really needed
because, by default, the primary input stream (stream 0) is selected. We put it in
the program so you could see how to write one. To select a secondary input,
specify the number 1.

To test MYFANOUT REXX, write an exec that uses both output streams:
/* MYTEST EXEC -- Exec to test MYFANOUT REXX */
'pipe (endchar ?)',

'literal Test data', /* Create record */
'| a: myfanout', /* Feed it to our stage */
'| specs /Output Stream 0/ 1', /* Put identifier in output record */

'1-* nextword', /* Put data in output record */
'| f: faninany', /* Combine streams */
'| console', /* Display results */
'?',
'a:',
'| specs /Output Stream 1/ 1', /* Put identifier in output record */

'1-* nextword', /* Put data in output record */
'| f:'

exit rc

The following is an example run of MYTEST EXEC:
mytest
Output Stream 0 Test data
Output Stream 1 Test data
Ready;

What happens if you don’t use both output streams? When MYFANOUT REXX tries
to select output stream 1, the SELECT pipeline subcommand gives a return code of
4. This SELECT return code indicates that the selected stream is not defined. The
SIGNAL instruction causes control to pass to the label error, and MYFANOUT ends
with a return code of 4.

MAXSTREAM Pipeline Subcommand
MAXSTREAM returns the number of the highest stream defined. The number is
given in the return code from MAXSTREAM. The number is the highest number
allowed in a SELECT command for the input or output stream (specify INPUT or
OUTPUT as an operand).

/* MYFANOUT REXX -- A simplified FANOUT to show SELECT */
signal on error

'select input 0' /* Select primary input stream, which is default */

do forever
'peekto record' /* Copy a record from input stream 0 */
'select output 0' /* Select output stream 0... */
'output' record /* ...write the record to output stream 0 */
'select output 1' /* Select output stream 1... */
'output' record /* ...write the record to output stream 1 */
'readto record' /* Read a record from input stream 0 */

end

error:
if rc=12 then rc=0
exit rc

Figure 198. Example of the SELECT Pipeline Subcommand: MYFANOUT REXX

Multistream Pipelines

142 z/VM: CMS Pipelines User’s Guide

Figure 199 shows an improved MYFANOUT REXX. MAXSTREAM is used to detect
the number of defined output streams. A record is written to each of these streams.

MAXSTREAM gives you the number of the highest stream defined, but it does not
indicate whether the streams are connected. In the above example, OUTPUT gives
a return code of 12 if the selected stream is disconnected.

To test the improved MYFANOUT REXX, use an exec like this one:
/* MYTEST1 EXEC -- Test the improved MYFANOUT */
'pipe (endchar ?)',

'literal Test',
'| a: myfanout',
'| specs /Output stream 0/ 1',

'1-* nextword',
'| f: faninany',
'| console',
'?',
'a:',
'| specs /Output stream 1/ 1',

'1-* nextword',
'| f:',
'?',
'a:',
'| specs /Output stream 2/ 1',

'1-* nextword',
'| f:',
'?',
'a:',
'| specs /Output stream 3/ 1',

'1-* nextword',
'| f:'

exit rc

Here is an example run of MYTEST1 EXEC:

/* MYFANOUT REXX -- Write record to all defined output streams */

'maxstream output' /* Get number of defined output streams */
outcount=rc /* Save that number */

signal on error /* Now intercept nonzero return codes */

'select input 0' /* Select primary input stream, which is default */

do forever
'readto record' /* Read a record from input stream 0 */
do i=0 to outcount /* Write a record to each output stream */

'select output' i /* Select output stream ... */
'output' record /* ...write the record to it */

end
end

error:
if rc=12 then rc=0
exit rc

Figure 199. Example of the MAXSTREAM Pipeline Subcommand: MYFANOUT REXX

Multistream Pipelines

Chapter 6. Multistream Pipelines 143

mytest1
Output stream 0 Test
Output stream 1 Test
Output stream 2 Test
Output stream 3 Test
Ready;

STREAMNUM Pipeline Subcommand
The STREAMNUM pipeline subcommand tests whether a given stream is defined. If
the stream is defined, the stream number is given in the return code. Otherwise,
STREAMNUM gives a negative return code. For operands, write a keyword
indicating an input or output stream (INPUT or OUTPUT) followed by the stream
number, stream name, or an asterisk (*). An asterisk means the currently selected
stream.

This command is handy to validate a stream identifier or to determine which stream
is currently selected.

CALLPIPE, Revisited
You can write subroutine pipelines that use multiple input and output streams. To do
so, specify the ENDCHAR option on the CALLPIPE command and separate the
pipelines with end characters. (CALLPIPE has the same options as the PIPE
command.)

When using multiple input streams, we need to tell CALLPIPE which one to use.
Use the full format for connectors:
*.input.0: <-- Identifies primary input stream 0
*.output.0: <-- Identifies primary output stream 0

Figure 200 shows LOCDEPT REXX. LOCDEPT expects personnel records as input.
It finds all records beginning with the names of department members and writes
those records to its primary output stream. Records that do not begin with names of
department members are written to the secondary output stream.

The following is an example run. Records of department members are prefixed with
an asterisk (*).

/* LOCDEPT REXX -- Locate personnel records for department members */
'callpipe (endchar ?)',

'*.input.0:', /* Connect primary input stream */
'| a: find Smith_'||, /* Look for Smith */
'| d: faninany', /* Combine all department members */
'| *.output.0:', /* Write department records to output 0 */
'?',
'a:',
'| b: find Jones_'||, /* Look for Jones */
'| d:', /* To FANINANY */
'?',
'b:',
'| c: find Davis_'||, /* Look for Davis */
'| d:', /* To FANINANY */
'?',
'c:',
'| *.output.1:' /* Rejects to output stream 1 */

exit rc

Figure 200. Example of Multistream Subroutine Pipeline: LOCDEPT REXX

Multistream Pipelines

144 z/VM: CMS Pipelines User’s Guide

pipe < salary data | console
Miles 25000
Smith 36500
Jones 22000
Davis 44199
Bush 32072
Rogers 16054
Thomas 18098
Ready;
pipe (end ?) < salary data| a:locdept| specs /*/ 1 1-* 2| console ? a:| console
Miles 25000
*Smith 36500
*Jones 22000
*Davis 44199
Bush 32072
Rogers 16054
Thomas 18098
Ready;

ADDPIPE Pipeline Subcommand
The ADDPIPE subcommand adds a pipeline to the set of executing pipelines. At
first glance, this seems similar to what CALLPIPE does, but there are two important
differences between ADDPIPE and CALLPIPE.

The first important difference is that the stage issuing ADDPIPE continues to run in
parallel with the new pipeline. When CALLPIPE is used, on the other hand, the
stage issuing the CALLPIPE waits until the CALLPIPE subcommand ends.

The second important difference is that ADDPIPE expands the kinds of connections
you can make between the new pipeline and the existing pipeline. CALLPIPE lets
you specify a connector at the beginning or the end of the pipeline. One or both
connectors can be omitted. ADDPIPE supports these connections and many others.

By using the connectors effectively, you can have your stage remap the surrounding
pipeline. This lets you do work in pipelines that you would otherwise have to do with
REXX instructions.

ADDPIPE Format
ADDPIPE accepts a pipeline as an operand. There isn’t anything special about
ADDPIPE that prevents you from using other pipeline subcommands (such as
READTO, OUTPUT, or CALLPIPE) in the same stage. The new pipeline can be
joined to the pipeline that called your stage by using connectors.

Connectors can be used at either end or both ends, or they can be omitted. Unlike
CALLPIPE, an input or an output connector can be specified at either end of the
pipeline or both ends. As always, though, connectors cannot be in the middle of the
pipeline. To avoid confusion, specify the full format of the connector (*.input: and
*.output:). A stream number can also be specified (for example, *.input.0:), but it is
often omitted. As always, the stream number defaults to 0. Because input and
output connectors can be used at either end of the pipeline, there are nine possible
combinations:

1. addpipe b | c

2. addpipe b | c | *.input:

3. addpipe *.output: | b | c

4. addpipe *.input: | b | c

5. addpipe b | c | *.output:

6. addpipe *.input: | b | c | *.input:

Multistream Pipelines

Chapter 6. Multistream Pipelines 145

7. addpipe *.output: | b | c | *.output:

8. addpipe *.input: | b | c | *.output:

9. addpipe *.output: | b | c | *.input:

The spacing in the above examples is for clarity. Fictitious stage names are used to
keep the examples simple and to focus your attention on the general abilities that
ADDPIPE provides rather than on specific problems.

Each connection possibility lets you redraw the surrounding map in a different way.
In the following sections, we discuss each of these connection variations. Some
connection variations are more useful than others. We’ll point them out along the
way.

Another thing to remember is that in some variations the original connection (that is,
the original pipeline map) can be restored by executing a SEVER pipeline
subcommand. (SEVER is described in “SEVER Pipeline Subcommand” on page
153.) In some cases the original connections cannot be restored. We’ll explain why
later in the following section.

ADDPIPE Connections
In our discussion of the connection variations, we’ll be referring to the PIPE
command shown in Figure 201. That command consists of three fictitious stages: A,
Z, and D. Stage Z is actually Z REXX. It is the user-written stage from which we’ll
be executing ADDPIPE pipeline subcommands. The other maps in this section
show how the original map (Figure 201) is changed when the ADDPIPE
subcommand is executed.

Variation 1: The first variation is an ADDPIPE subcommand that does not have
connectors (see Figure 202). The ADDPIPE subcommand is issued from the Z
stage.

In this case, the stages in the ADDPIPE subcommand operate independently of the
original pipeline. Stages B and C are dispatched along with A, Z, and D. The order
in which the stages are dispatched is not predictable. The stage that issued the

pipe A | Z | D

┌───┐ ┌───┐ ┌───┐
│ A ├──�│ Z ├──�│ D │
└───┘ └───┘ └───┘

Figure 201. The Original Pipeline

addpipe B | C

┌───┐ ┌───┐ ┌───┐
│ A ├──�│ Z ├──�│ D │
└───┘ └───┘ └───┘

┌───┐ ┌───┐
│ B ├──�│ C │
└───┘ └───┘

Figure 202. ADDPIPE Map: B | C

Multistream Pipelines

146 z/VM: CMS Pipelines User’s Guide

ADDPIPE command (stage Z) could be dispatched before the stages it added with
ADDPIPE (stages B and C). In fact, there is no way for stage Z to tell when stages
B and C have finished.

The return code from ADDPIPE indicates whether the stages have been added
successfully to the set of running stages. Nonzero return codes indicate syntax
errors in the ADDPIPE subcommand itself. They do not indicate whether the stages
ran successfully. (Remember, control may return to your stage before the added
stages are finished.)

If an added stage ends with a nonzero return code, the return code is reported by
the original PIPE command that called your stage.

Figure 203 shows an example of this ADDPIPE variation. The stage expects file
identifiers in its input records. It uses the file name in an ADDPIPE command to
make an uppercase copy of the file. Because records are likely to flow through the
BACKUP stage faster than the files can be copied, several copy operations may be
active at the same time.

In the following PIPE command, BACKUP is used to make uppercase copies of all
SCRIPT files on file mode A. The names of the files are displayed by CONSOLE.
pipe cms listfile * script a | backup | console
DIRMAIL SCRIPT A1
DMSC5XMP SCRIPT A1
EMPLOYEE SCRIPT A1
FRUITS SCRIPT A1
LEGUMES SCRIPT A1
LOWER SCRIPT A1
MYBOOK SCRIPT A1
RECORDS SCRIPT A1
SAMPLE SCRIPT A1
SNIP SCRIPT A1
VMLETTER SCRIPT A1
Ready;

Variation 2: The next connection variation is shown in Figure 204 on page 148.
The original pipeline is altered such that the output from stage C is connected to
the input to stage Z.

/* BACKUP REXX -- Make copies of the files named in the input records */
signal on error

do forever
'readto record' /* Read a record containing a file ID */
parse var record fn . fm . /* Parse the file ID */
'addpipe', /* Add a pipeline... */

'<' record, /* ...read the file */
'| xlate upper', /* ...translate to uppercase */
'| >' fn 'backup' fm /* ...write it to a BACKUP file */

'output' record /* Write file ID to output stream */
end

error:
if rc=12 then rc=0
exit rc

Figure 203. ADDPIPE Example: BACKUP REXX

Multistream Pipelines

Chapter 6. Multistream Pipelines 147

Figure 205 shows an example of this variation. SECPARM REXX writes a record
containing a security notice to the output stream. Then it copies all other records in
its original input stream to its output stream. SECPARM REXX reads a parameter
file that contains one record to determine what security record should be written.
While there are several ways to do this, ADDPIPE is used.

The stages added by ADDPIPE read the file PARM DATA, translate the record to
uppercase, and then feed the record to SECPARM’s input stream. An appropriate
security classification is selected and OUTPUT writes the security record to
SECPARM’s output stream.

How is it possible for SECPARM to read the record written by XLATE? Remember
that the stages added by ADDPIPE run concurrently with SECPARM itself.
ADDPIPE alters the map of the pipeline, so the stages are dispatched just as
stages are dispatched in any other pipeline.

For instance, assume that SECPARM is dispatched before the stages added by
ADDPIPE. When SECPARM executes a READTO subcommand, the dispatcher
gets control. The map of the pipeline has already been changed by ADDPIPE. So,
CMS Pipelines knows that the output stream of XLATE UPPER is connected to the
input stream of SECPARM. CMS Pipelines also knows it must dispatch the stages
added by ADDPIPE to satisfy the READTO. This is no different than the dispatching
discussed in “How a Pipeline Runs” on page 78.

addpipe B | C | *.INPUT:

┌───┐ ┌───┐ ┌───┐
│ A ├─ ┌�│ Z ├──�│ D │
└───┘ │ └───┘ └───┘

│
┌───┐ ┌───┐ │
│ B ├──�│ C ├─┘
└───┘ └───┘

Figure 204. ADDPIPE Map: B | C | *.INPUT:

/* SECPARM REXX -- Add header comment with security notice */

/* Add a pipeline to read parameter file */
'addpipe < parm data | xlate upper | *.input.0:'

/* Process the record in the parameter file */
'readto record' /* Read the record from the ADDPIPE stages */

select
when pos('CONFIDENTIAL',record)>0 then

'output /* This exec is company confidential */'
otherwise;

'output /* This exec is unclassified */'
end

'sever input' /* Now sever ADDPIPE connection and restore previous */
'short' /* Copy records from original connection to output */
exit rc

Figure 205. ADDPIPE Example: SECPARM REXX

Multistream Pipelines

148 z/VM: CMS Pipelines User’s Guide

It’s important to remember that ADDPIPE changes the map of the pipeline when it
is executed. When reading execs containing ADDPIPE subcommands, it helps to
draw the map of the pipeline. Use the generic maps in this section as a guide.

After the parameter record has been read, we want to copy all of the records in the
original input stream to SECPARM to the output stream. A SHORT subcommand
will do it, but first we have to reconnect the original input stream. (We want to revert
back to the original pipeline as depicted in Figure 201 on page 146.)

CMS Pipelines does not automatically restore the original connections when the
stages added by ADDPIPE end. To restore the original input stream, we execute a
SEVER INPUT subcommand.

The SEVER INPUT subcommand disconnects the current input stream. The current
input stream happens to be the output from the XLATE stage that ADDPIPE added.
CMS Pipelines remembers any previous connections. It uses a stack in case
several ADDPIPE commands were executed. When a connection is severed, CMS
Pipelines restores the next one on the stack (if any). In the example, the only input
stream connection on the stack is the original connection. CMS Pipelines restores
this connection, and our original map is restored.

Finally, a SHORT subcommand is executed, and SECPARM ends. An example run
of SECPARM follows:
pipe < parm data | console
CONFIDENTIAL
Ready;
pipe < legumes script | secparm | console
/* This exec is company confidential */
Peas
Bush beans
Pole beans
Lima beans
Ready;

Variation 3: The next variation involves an output connector (Figure 206).

As the map shows, the output stream from stage Z is connected to the input stream
of stage B. The output is diverted from stage D. Figure 207 on page 150 shows an
example named TRACER REXX.

TRACER REXX accepts a string of text as an operand. It appends the string of text,
along with the date and time, to a file named TRACER LOG. Then it copies all the
records in its input stream to its original output stream (that is, to stage D).

addpipe *.output: | B | C

┌───┐ ┌───┐ ┌───┐
│ A ├──�│ Z ├─┐ ─┤ D │
└───┘ └───┘ │ └───┘

│ ┌───┐ ┌───┐
└───�│ B ├──�│ C │

└───┘ └───┘

Figure 206. ADDPIPE Map: *.OUTPUT: | B | C

Multistream Pipelines

Chapter 6. Multistream Pipelines 149

The ADDPIPE subcommand connects the primary output stream of TRACER REXX
to the primary input stream of the >> stage. When the OUTPUT subcommand is
executed, its record becomes the input to the >> stage.

After the tracer record is written, TRACER copies the input records to the original
output stream. The SEVER OUTPUT subcommand restores the original output
connection (which is the only one in the stack of output connections). The map of
the pipeline reverts to the map shown in Figure 201 on page 146. The SHORT
subcommand copies the original input stream to the original output stream.

Notice that it was not necessary to execute a SEVER subcommand for the input
stream. The original input stream was not changed by ADDPIPE.

The following example shows a PIPE command that uses TRACER and a PIPE
command that displays the log.
pipe < salary data | tracer Need to verify Smith's salary | console
Miles 25000
Smith 36500
Jones 22000
Davis 44199
Bush 32072
Rogers 16054
Thomas 18098
Ready;
pipe < tracer log | console
20 Jan 1992 16:05:19 Need to verify Smith's salary
Ready;

Variation 4: In some connection variations, it is not possible to reconnect to the
original input stream. Consider the next variation, which is shown in Figure 208.

In this variation, A’s output stream is diverted to stages B and C. Once the new
connection is established, you cannot sever it and return to the old connection. The
stages B and C run concurrently with your stage (Z). If you were able to sever the
connection after ADDPIPE executes, you would have no way of knowing how many

/* TRACER REXX -- Write text to TRACER LOG */
parse arg text
'addpipe *.output.0: | >> tracer log a' /* Add stages, change connections */
'output' date() time() text /* Write record to TRACER LOG */
'sever output' /* Restore original connection */
'short' /* Copy records */
exit rc

Figure 207. ADDPIPE Example: TRACER REXX

addpipe *.input: | B | C

┌───┐ ┌───┐ ┌───┐
│ A ├──┐ ─┤ Z ├──�│ D │
└───┘ │ └───┘ └───┘

│
│ ┌───┐ ┌───┐
└──�│ B ├──�│ C │

└───┘ └───┘

Figure 208. ADDPIPE Map: *.INPUT: | B | C

Multistream Pipelines

150 z/VM: CMS Pipelines User’s Guide

records stages B and C processed, if any. You wouldn’t even know if the stages still
existed. So, severing the input stream in this variation is not permitted. Because Z
cannot process its original input stream, this connection variation is one of the least
useful.

We’ve already covered most of the ADDPIPE concepts. The remaining variations
truly are variations on the same concepts.

Variation 5: The connection variation in Figure 209 has a problem similar to one
in the previous variation. The ADDPIPE subcommand connects the output stream of
stage C to the input stream of stage D. The output stream of stage Z is
disconnected.

In this variation, the output connection established by ADDPIPE cannot be severed.
Stage Z does not know how many records stage C has written, and Z cannot
predict when it will be dispatched. If Z could sever the output connection, the
processing status of C and D would be unpredictable. Consequently, a sever is not
allowed.

Variation 6: This variation is far more useful (Figure 210) than the previous two. It
lets you insert stages before your stage.

By using ADDPIPE to insert stages, you can do more work in CMS Pipelines
instead of in REXX. For example, the following code fragment selects records
containing the string NY and sorts them. Then the preprocessed records are read by
READTO:
...
'addpipe *.input: | locate /NY/ | sort | *.input:'
do forever

'readto record'
/* Add REXX instructions here for tasks that cannot be done by */
/* CMS Pipelines */
'output' record

addpipe B | C | *.output:

┌───┐ ┌───┐ ┌───┐
│ A ├──�│ Z ├─ ┌─�│ D │
└───┘ └───┘ │ └───┘

│
┌───┐ ┌───┐ │
│ B ├──�│ C ├──┘
└───┘ └───┘

Figure 209. ADDPIPE Map: B | C | *.OUTPUT:

addpipe *.input: | B | C | *.input:

┌───┐ ┌───┐ ┌───┐
│ A ├─┐ ┌�│ Z ├──�│ D │
└───┘ │ │ └───┘ └───┘

│ │
│ ┌───┐ ┌───┐ │
└�│ B ├──�│ C ├─┘

└───┘ └───┘

Figure 210. ADDPIPE Map: *.INPUT: | B | C | *.INPUT:

Multistream Pipelines

Chapter 6. Multistream Pipelines 151

end...

Severing the input connection is not allowed. If a sever were allowed, it would not
be possible to predict how many records would be preprocessed before the SEVER
subcommand is executed.

Variation 7: Another useful variation is shown in Figure 211. It lets you insert
stages after your stage.

The stages process the records that your stage writes to its output stream. Even
though the stages act as a post-processor, execute the ADDPIPE subcommand
before you write records you want to post-process. Otherwise, the records you write
before the ADDPIPE command will be processed by stage D (as defined in the
original map):
...
'output' record /* Write a record to be processed by stage D */
'addpipe *.output: | xlate upper | *.output:' /* Change map */
'output' record /* Write a record to be processed by XLATE */...

The connection made in this variation cannot be severed. (You would not be able to
tell how many records were processed by the ADDPIPE stages.)

Variation 8: The connections in Figure 212 are similar to those used in CALLPIPE
when both connectors are specified. In effect, you substitute the ADDPIPE stages
for stage Z. With CALLPIPE, however, the original connections are automatically
restored in some cases. Because ADDPIPE stages run concurrently, the original
connections cannot be restored. You could process some records with READTO
and OUTPUT subcommands, and then let stages B and C process the remainder.

addpipe *.output: | B | C | *.output:

┌───┐ ┌───┐ ┌───┐
│ A ├──�│ Z ├─┐ ┌�│ D │
└───┘ └───┘ │ │ └───┘

│ │
│ ┌───┐ ┌───┐ │
└�│ B ├──�│ C ├─┘

└───┘ └───┘

Figure 211. ADDPIPE Map: *.OUTPUT: | B | C | *.OUTPUT:

addpipe *.input: | B | C | *.output:

┌───┐ ┌───┐ ┌───┐
│ A ├─┐ ─┤ Z ├─ ┌──�│ D │
└───┘ │ └───┘ │ └───┘

│ │
│ ┌───┐ ┌───┐ │
└─�│ B ├──�│ C ├──┘

└───┘ └───┘

Figure 212. ADDPIPE Map: *.INPUT: | B | C | *.OUTPUT:

Multistream Pipelines

152 z/VM: CMS Pipelines User’s Guide

This variation provides another way for us to do a SHORT:
addpipe *.input: | *.output:

Variation 9: The last connection variation is most unusual. The output stream of
stage Z is connected to the input stream of stage B. The output of C is connected
to the input of Z. We have created a loop—a stall is possible. You can sever the
connections made by this ADDPIPE (before a stall, of course).

SEVER Pipeline Subcommand
Use the SEVER subcommand to disconnect the currently selected stream. If the
disconnected stream was connected to another stage previously, the connection is
restored. SEVER requires one operand (INPUT or OUTPUT) that identifies the
stream you want to sever.

SEVER is often used after ADDPIPE. You can use it to restore previously
connected streams after you have processed some records on the stream
connected with ADDPIPE.

SEVER can also be used to sever a stream after you are done processing it. Some
selection stages, for instance TAKE, use SEVER when they switch from the primary
output to the secondary output. This reduces the probability of a stall.

For example, suppose your stage is done processing input records. There may be
more records in the input stream, but you do not want to process them. Instead of
issuing a SEVER, your stage continues with other processing. Because you haven’t
severed the connection, the stage that was supplying records on your input stream
waits indefinitely the next time it writes a record. You have no intention of reading
the record, but CMS Pipelines doesn’t know that. So, the stage waits, increasing
the probability of a stall.

When you issue a SEVER, however, CMS Pipelines knows you no longer intend to
read records on that stream. It can give a return code of 12 to any stage that was
waiting for you to read its output. By freeing the stage behind you, you may free a
stage ahead of you, and in a roundabout way, save your own stage from stalling.

When control returns from your stage, CMS Pipelines severs all streams still
connected to that stage.

�PI end�

addpipe *.output: | B | C | *.input:

┌───┐ ┌───┐ ┌───┐
│ A ├─ ┌�│ Z ├─┐ ─┤ D │
└───┘ │ └───┘ │ └───┘

│ │
│ │ ┌───┐ ┌───┐
│ └�│ B ├──�│ C ├─┐
│ └───┘ └───┘ │
└───────────────────────┘

Figure 213. ADDPIPE Map: *.OUTPUT: | B | C | *.INPUT:

Multistream Pipelines

Chapter 6. Multistream Pipelines 153

154 z/VM: CMS Pipelines User’s Guide

Chapter 7. Event-Driven Pipelines

In CMS Pipelines, an event-driven pipeline is one that contains one or more stages
that wait for an event. Regular pipelines, on the other hand, run without waiting for
an event to occur. They process to completion as fast as they can.

Event-driven pipelines aren’t as complicated as they sound. Your home probably
contains several event-driven appliances. Perhaps you have a coffee machine that
brews coffee automatically in the morning. Or, perhaps you have a telephone
answering machine that answers the phone when it rings. Both of these appliances
are event-driven. One waits for a certain time of day, while the other waits for an
incoming call.

Although you can’t get CMS Pipelines to brew a good cup of coffee, you can have it
start long-running jobs overnight. Or, you can have it respond to messages when
you are away from your desk. You can also use it to set up service virtual
machines.

Service virtual machines are virtual machines that provide resources to several
users. For instance, a service virtual machine might accept requests for data, look
up the data, and send it back to the requesting user. Service virtual machines
typically run with the console disconnected.

Stages for Event-Driven Pipelines
This section describes three stages that pertain to event-driven pipelines. All are
considered device drivers because they write data to the pipeline (although not
immediately). The three stages are:

v DELAY

This stage lets you do things at a certain time or after some time has passed.
DELAY is similar to the timer on the coffee machine.

v IMMCMD

This stage lets you enter commands to a pipeline that is waiting for an event to
occur. These commands are known as immediate commands. They are like other
immediate commands, as described in the z/VM: CMS Commands and Utilities
Reference. IMMCMD lets you control the pipeline even though it is waiting to do
something else. For instance, IMMCMD can let you stop a long-running pipeline
or change some aspect of its processing. IMMCMD is similar to the controls
provided on your appliances. Even though you have your answering machine set
to respond to calls, you can still override it and pick up a call if you wish.

v STARMSG

This stage lets you do things in response to incoming messages. The pipeline
could, for example, record the message in a CMS file and respond to the user
that you are away from your desk. A more complex pipeline, as might be found in
a service virtual machine, could analyze the message and send data (such as a
file) back to the user.

DELAY Stage
DELAY reads a record from its input stream, waits for some event to occur, and
then copies that record to its output stream. DELAY repeats this process for every
input record, processing them one at a time.

© Copyright IBM Corp. 1991, 2009 155

The events for which DELAY waits are time-based. DELAY can be told to wait for a
particular time of day or for some time interval to elapse. DELAY determines how
long to wait by looking at the first blank-delimited word of each input record. That
word should specify the time that DELAY is to wait before copying the record to its
output.

Each input record can specify a different delay. The input records can also contain
other data after the delay information. Although DELAY looks at only the first
blank-delimited word when determining the delay, it copies the entire input record to
its output record when the time has elapsed.

Let’s look at an example of DELAY. To start an exec named COFFEE EXEC at 6:30
A.M., you could enter:
pipe literal 6:30 | delay | specs /exec coffee/ 1 | cms
#cp disc

LITERAL writes a record containing 6:30 to its output stream. DELAY reads the
record and starts waiting for the next 6:30 A.M. (whether it is today or tomorrow).
DELAY expects 24-hour clock notation as input:

�� hh
(1)

:mm
(1)

:ss

�

Notes:

1 No blanks are allowed in this position.

Meanwhile, you enter a CP DISCONNECT command and go home. (Enter #cp disc
or press the PA1 key and then enter disc.)

At 6:30 A.M., DELAY copies that one input record to its output stream. SPECS
reads this record and writes an output record containing exec coffee—SPECS
does not use the data in the input record. The CMS stage reads the record, which
contains exec coffee, and passes it to CMS. CMS runs the COFFEE exec and the
pipeline ends.

An exec to do the same thing is shown in Figure 214. It accepts two operands: the
time of day at which to run the command, and the command to be run. A stage is
added that appends the output of the command to a log file.

Another use for DELAY is to run a command at regular intervals. The following
example shows how to run the COFFEE exec once every hour:

/* LATER EXEC */
parse arg time command
'pipe',

'literal' time, /* Put the time in the pipeline */
'| delay', /* Wait for the specified time */
'| specs /'command'/ 1', /* Write output record containing command */
'| cms', /* Pass it to CMS */
'| >> LATER LOG A' /* Log any console output */

Figure 214. LATER EXEC: A DELAY Example

Event-Driven Pipelines

156 z/VM: CMS Pipelines User’s Guide

pipe literal +1:00:00 |duplicate *|delay|specs /exec coffee/ 1|cms
#cp disc

LITERAL writes a record containing the string +1:00:00 to its output stream. The
plus (+) indicates an interval instead of a time of day. (If you forget the plus, the
record is delayed until 1:00 A.M.) To indicate minutes and seconds, use +mm:ss. To
indicate seconds, just type a number without a colon (for a 100 second delay:
LITERAL +100).

DUPLICATE * generates an infinite number of those records, but only one at a time.
(DUPLICATE generates a second record only after the DELAY stage reads the first
record.) DELAY reads the record written by DUPLICATE. DELAY understands
+1:00:00 to mean wait one hour.

After an hour elapses, DELAY writes the record to its output stream. SPECS writes
a record containing exec coffee and CMS executes it. DELAY starts timing the next
interval when the stage after it processes the output record. COFFEE is issued less
frequently than once an hour if it takes an appreciable time to process the
response. You might adjust the delay if the processing always takes the same time.

It’s possible to generate a command and run it immediately. Figure 215 shows this.

Even though DELAY waits, other stages run as fast as they can until they need a
record that DELAY must supply. To run a command immediately, put a LITERAL
stage between DELAY and SPECS. Because LITERAL writes its operand to its
output stream before it reads its input, LITERAL is able to write its operand
immediately. Then LITERAL tries to read a record from its input stream and waits
because the record is delayed. The stages following LITERAL immediately process
the first record written by LITERAL and then they wait for the next record from
DELAY. Here’s an example run of LATER2:
later2
Coffee started...
#cp disc

The LITERAL stage writes Go. to its output stream. SPECS reads the record and
writes a record containing the string exec coffee to its output stream. CMS reads
the record written by SPECS and executes exec coffee. COFFEE is a simple exec
that displays the message Coffee started:
/* z/VM Coffee Support */
say 'Coffee started...'
exit

To stop a long-running PIPE command, enter the PIPMOD STOP command:

/* LATER2 EXEC */
'pipe',

'literal +1:00:00', /* Put one hour interval in the pipeline */
'|duplicate *', /* Copy its input record */
'|delay', /* Wait for the specified amount of time */
'|literal Go.', /* Write output record containing Go. */
'|specs /exec coffee/ 1', /* Write output record containing 'exec coffee' */
'|cms', /* Pass it to CMS */
'|console' /* Display output on the terminal */

Figure 215. LATER2 EXEC: A DELAY Example

Event-Driven Pipelines

Chapter 7. Event-Driven Pipelines 157

pipe literal +1:00:00 | delay | console
pipmod stop
Ready;

Figure 216 shows another delay program. This program, named EVERY REXX,
contains a subroutine pipeline. EVERY accepts two arguments: a delay (without a
plus sign) and a command. EVERY writes the command line to the pipeline after
the specified delay. It uses DUPLICATE * to create an infinite number of these
commands, one at a time.

The SPECS stage shows how to write any string without worrying about the stage
separator: convert it to hexadecimal.

The first blank-delimited word on an input line specifies either the time in hours,
minutes, and seconds, or IMMediate.

Figure 217 shows another example exec that lets you delay commands.

/* EVERY REXX -- Write a line after a delay */
signal on novalue
parse arg holdup cmd
if ¬abbrev('IMMEDIATE',translate(holdup),3)/* One right now? */

then istring='', /* No... */
else do

parse arg . holdup cmd /* Yes, parse again */
istring='| literal go.'

end

'callpipe',
'literal +'holdup, /* Make a relative delay */
'| duplicate *', /* As many as needed */
'| delay', /* Wait */

istring, /* Fire one immediately, maybe */
'| specs x'c2x(cmd) '1', /* Turn it into a command */
'| cms', /* Pass it to CMS */
'| *:' /* Pass to output */

exit rc

novalue:
say 'No argument was specified'
exit

Figure 216. EVERY REXX: Example Subroutine Pipeline for Delaying Commands

Event-Driven Pipelines

158 z/VM: CMS Pipelines User’s Guide

To use DOIT to execute a CMS TELL command in 10 seconds, you would enter:
doit in 10 seconds tell exec * hi.

Or, to start COFFEE immediately and at 6:00 A.M., enter:
doit imm at 6:00 coffee

To run COFFEE every hour, enter:
doit every 1 hour coffee

To end a long-running pipeline, like the one started by DOIT when EVERY is
specified, enter:
pipmod stop

/* DOIT EXEC has the following formats: */
/* */
/* DOIT (IMMediate) < AT hh:mm > command */
/* < IN n <Hours|Minutes|Seconds> > */
/* < EVERY n <Hours|Minutes|Seconds> > */
parse upper arg token duration line

/* Run command immediately ? */
if abbrev('IMMEDIATE',token,3) then do

parse upper arg . token duration line /* Re-parse if IMM is specified */
istring='| literal go.' /* Yes, build a pipeline segment */

end
else istring=''

dup=0
select
when token='AT' then do

cmd=line
duration=duration||':00'
end

when token='EVERY' | token='IN' then do
parse var line units cmd
if token='EVERY' then dup='*'
select
when abbrev('HOURS',units,1) then duration='+'||duration||':00:00'
when abbrev('MINUTES',units,1) then duration='+'||duration||':00'
when abbrev('SECONDS',units,1) then duration='+'||duration
otherwise do

say 'Must specify Hours, Minutes, or Seconds'
exit 2
end

end /* select */
end

otherwise do
say 'Must specify AT, IN, or EVERY'
exit 1
end

end /* select */
'pipe literal 'duration,

' | duplicate 'dup,
' | delay ',

istring,
' | specs /'cmd'/ 1 ',
' | cms'

exit rc

Figure 217. DOIT EXEC: Example Exec for Delaying Commands

Event-Driven Pipelines

Chapter 7. Event-Driven Pipelines 159

PIPMOD STOP is a command that immediately terminates the PIPE command.

IMMCMD Stage
IMMCMD lets you set up immediate commands to control long-running pipelines. An
immediate command is a command that takes priority over some long-running
process. The system interrupts the long-running process temporarily and executes
the immediate command.

One use of immediate commands is to let the user execute CMS commands while
the pipeline is running. Another useful immediate command would provide an
alternative way to end long running pipelines. You might, for example, define an
immediate command named STOP that causes the PIPE command to end.
Examples of both are in this section.

Note: Because of the way screens are refreshed, it is recommended that you run
the examples in this section in line mode instead of full-screen CMS. Enter
the CMS command QUERY FULLSCREEN to see if full-screen CMS is on. If
it is, enter SET FULLSCREEN OFF to return to line-mode operation.

To define an immediate command, specify the name of the command as an
argument on the IMMCMD stage. IMMCMD does two things. It sets up an
immediate command with the name you specify as an operand. (The immediate
command is just like any other CMS immediate command.) Then IMMCMD waits
for you to type the operand as an immediate command. When you enter that
immediate command, IMMCMD writes a record to its output stream. The record
consists of any arguments specified on the immediate command, but not the name
of the immediate command itself. If no operands are supplied on the immediate
command, IMMCMD writes a null record to the pipeline.

Figure 218 shows an example of IMMCMD. Try entering a PIPE command like the
one shown in the figure. When you enter the command, the IMMCMD stage waits
for you to enter mycom. In the example, mycom hello is entered. IMMCMD writes a
record containing hello to its output stream, and CONSOLE displays it. To end the
pipeline, enter PIPMOD STOP as shown.

IMMCMD is often used in PIPE commands that contain other long-running
pipelines. Pipelines that define immediate commands should be placed before other
long-running pipelines. Otherwise, the long-running pipeline could run first, and the
immediate command will not be set up until it is too late.

In Figure 219 on page 161, IMMCMD defines a STOP immediate command in the
first pipeline. The second pipeline executes a CP MESSAGE command every 5
seconds. The streams of the two pipelines are not connected.

pipe immcmd mycom | console
mycom hello
hello
pipmod stop
Ready;

Figure 218. IMMCMD Stage Example

Event-Driven Pipelines

160 z/VM: CMS Pipelines User’s Guide

When a STOP command is entered, IMMCMD writes a record containing the
operands, if any, to its output. If there aren’t any operands on the STOP command,
IMMCMD writes a null record. Then SPECS writes string PIPMOD STOP to its output
stream. Finally, COMMAND executes PIPMOD STOP, ending the PIPE command.
Here is an example run of RPTMSG:
rptmsg
15:55:07 * MSG FROM YOURID : HELLO
15:55:12 * MSG FROM YOURID : HELLO
15:55:17 * MSG FROM YOURID : HELLO
15:55:22 * MSG FROM YOURID : HELLO
stop
Ready;

The subroutine in Figure 220 shows how to define more than one immediate
command. It defines two immediate commands: STOP and CMS. The CMS
immediate command sends commands to CMS for processing. Both of these
pipelines are independent of each other and run concurrently. Notice that neither
pipeline is connected with the caller’s input or output streams—this is perfectly
acceptable. Even though the streams are not connected, the PIPE command
processes them concurrently.

With ASYNCMS, you can rewrite RPTMSG EXEC as shown in Figure 221 on page
162.

/* RPTMSG EXEC -- Repeat a message every 5 seconds */
'PIPE (endchar ?)',

'immcmd stop', /* Output here when user types STOP */
'| specs /PIPMOD STOP/ 1', /* Write PIPMOD STOP to output */
'| command', /* Issue it */
'?',
'literal +5', /* Write record containing delay */
'| duplicate *', /* Duplicate it */
'| delay', /* Delay */
'| specs /message * hello/ 1', /* Write a CP MESSAGE command */
'| cp' /* Issue the command */

exit rc

Figure 219. IMMCMD Stage Example: RPTMSG EXEC

/* ASYNCMS REXX -- Issue asynchronous CMS command or stop pipeline */
'callpipe (endchar ? name ASYNCMS)',

'immcmd stop', /* STOP commands: */
'| specs /PIPMOD STOP/ 1', /* Make the pipeline stop */
'| command', /* Issue it */
'?',
'immcmd cms', /* CMS commands: */
'| subcom cms', /* Issue to CMS */
'| *:' /* Connect to caller */

exit rc

Figure 220. Example Subroutine to Enter Asynchronous Commands: ASYNCMS REXX

Event-Driven Pipelines

Chapter 7. Event-Driven Pipelines 161

To enter a CMS or CP command while the pipeline is running, enter CMS followed
by the command you want to execute. For example, to enter a CMS SENDFILE
command:
cms exec sendfile test data a to denise

ASYNCMS passes the command to CMS for processing. (If the command is a CP
command, CMS passes it to CP.) In the following example run of RPTMSG1, the
user enters a CMS QUERY DISK A command and a STOP command:
rptmsg1
16:09:30 * MSG FROM YOURID : HELLO
16:09:35 * MSG FROM YOURID : HELLO
cms query disk a
LABEL VDEV M STAT CYL TYPE BLKSIZE FILES BLKS USED-(%) BLKS LEFT BLK TOTAL
BAR191 191 A R/W 3 3380 4096 101 124-28 326 450
16:09:40 * MSG FROM YOURID : HELLO
16:09:45 * MSG FROM YOURID : HELLO
stop
Ready;

STARMSG Stage
The STARMSG stage lets you write lines from the CP Message system service
(*MSG) or the Message All system service (*MSGALL). Before using STARMSG,
you need to understand the Message system service. It is described in the z/VM:
CP Programming Services book. To use the Message system service, specify *MSG
as the operand to STARMSG. To use the Message All system service, specify
*MSGALL as the operand to STARMSG. If you do not specify an operand on
STARMSG, it uses the Message system service by default. Before using
STARMSG, you must also make sure CMS FULLSCREEN is set to SUSPEND or
OFF.

The STARMSG stage sets up a connection to the system service and waits for a
message to arrive. When a message arrives, STARMSG writes a record to its
output stream. That record contains an 8-byte message class followed by the 8-byte
user ID from which the message originated and any message data.

Figure 222 on page 163 shows the record format.

/* RPTMSG1 EXEC -- Improved */
'PIPE (endchar ?)',

'asyncms', /* Define STOP and CMS commands */
'?',
'literal +5', /* Write record containing delay */
'| duplicate *', /* Duplicate it */
'| delay', /* Delay */
'| specs /message * hello/ 1', /* Write a CP MESSAGE command */
'| cp' /* Issue the command */

exit rc

Figure 221. Example Use of ASYNCMS REXX

Event-Driven Pipelines

162 z/VM: CMS Pipelines User’s Guide

There are simple service virtual machines that process commands sent with the CP
SMSG command from users on the same system. More sophisticated servers can
service requests forwarded as RSCS messages. Here is an example of the first
kind:
/* Process SMSG requests */
'CP SET SMSG IUCV' /* Direct SMSGs to IUCV */
'PIPE',

'starmsg', /* Trap messages */
'| specs 9-* 1', /* Strip off message class (columns 1 through 8) */
'| validate', /* Verify that user is authorized */
'| specs 9-* 1', /* Strip the user ID from the message */
'| subcom cms' /* Pass the message, which should be a command, to CMS */

In the example, STARMSG traps only SMSG messages, so the message class
prefix is always the same. It is discarded. VALIDATE is a user-written stage (see
Figure 189 on page 130). It ensures that only those we trust get service. Use
selection filters and multiple streams to process requests from users in particular
ways.

STARMSG sets up the immediate command HMSG. Enter HMSG to stop
STARMSG. HMSG lets an orderly clean-up occur. PIPMOD STOP will also stop
STARMSG, but it stops all stages that are waiting for an external event such as
DELAY and IMMCMD.

Let’s look at the output records generated by STARMSG. First we issue SET
CPCONIO IUCV to direct CP command responses to IUCV. We then issue SET
MSG IUCV and SET SMSG IUCV to direct messages to IUCV.
set cpconio iucv
Ready;
set msg iucv
Ready;
set smsg iucv
Ready;
pipe starmsg | console
#cp msg * hi
00000001YOURID HI
#cp query time
00000003YOURID TIME IS 16:22:48 EST WEDNESDAY 10/30/91
00000003YOURID CONNECT= 01:31:32 VIRTCPU= 000:08.73 TOTCPU= 000:14.79
#cp smsg * Let's send a special message.
It should appear as class 4
00000004YOURID LET'S SEND A SPECIAL MESSAGE. IT SHOULD APPEAR AS CLASS 4
hmsg
Ready;

┌────────┬─────────┬───────────────────────────
│ class │ user ID │ message ...
└────────┴─────────┴───────────────────────────
1 8 9 16 17

For example,

00000001USERID Here is the message text

Figure 222. Format of STARMSG Output Records

Event-Driven Pipelines

Chapter 7. Event-Driven Pipelines 163

Example File Server
This section shows how to combine IMMCMD and STARMSG to create a file
server. A file server is a program that manages a collection of files. Users send
requests related to those files to the file server, and the file server processes those
requests. (z/VM’s Shared File System uses the file server concept.) On z/VM, a file
server typically runs in a disconnected virtual machine.

Complex file servers let users read files, write files, create locks on files, and so on.
Varying communication mechanisms are used between the user machines and the
file server machines. The file server we show here is very simple and has limited
error handling. It processes only one request, which is to retrieve a file. For
communications, the user machine uses the CMS TELL command to send requests
to the server, and the server virtual machine uses the CMS SENDFILE command to
send files to the user. The file server may also communicate with the user through
the CMS TELL command to track errors.

Example Requester
Our design requires users to send a structured message to the server machine
when they want a file. Rather than rely on users to enter the proper TELL
command, we create an exec, named FGET, to do it. FGET is shown in Figure 223.

In the TELL command, substitute the user ID of the server for serverid. Substitute
the node ID of the server for nodeid.

FGET accepts a file name, file type, and a file mode as input. To get the server
machine’s ALL NOTEBOOK A file, for example, a user would enter:
fget all notebook a

FGET builds a structured message and executes the TELL command. Notice that
the server may be on a different node. Also notice that the message contains the
string $FGET$ followed by the desired file identifier. The string $FGET$ is used by the
server to distinguish file requests from other messages it may receive.

Example Server
After defining the structure of the message, we need to determine how that
message will look when STARMSG intercepts it. We already know that STARMSG
writes records to its output stream in the following form:
00000001USERID Message text

/* FGET EXEC -- send a file request to the server machine */
parse upper arg fn ft fm .
if fn='' then exit 1
if ft='' then ft='SCRIPT'
if fm='' then fm='A'

'EXEC TELL serverid AT nodeid $FGET$ 'fn ft fm
exit 0

Figure 223. FGET EXEC: Example Requester

Event-Driven Pipelines

164 z/VM: CMS Pipelines User’s Guide

The first 8-byte field contains the message class. Our structured messages are
being sent with the CMS TELL command, so message class 1 is the only class of
interest. The second 8-byte field contains the user ID, while the rest of the record
contains the message text.

In theory, the messages we get from users should look like this:
00000001MELINDA $FGET$ ALL NOTEBOOK A

But, we may get messages over the network:
00000001RSCS From VMNODE(JOHN): $FGET$ ALL NOTEBOOK A

We may also get messages that have nothing to do with file requests:
00000001RSCS File (7968) spooled to YOURID -- origin VMND5(SMITHA) 08/14/91 1
0:11:52 EDT
00000001RSCS From VMND2(JONESY): Are you there?
00000001LISA Please reaccess the tools disk.

Furthermore, we may want to limit access to certain user IDs. Messages from
unauthorized users will look like any other messages:
00000001NOTMYBUD$FGET$ COMPANY SECRETS A

We need some way to verify user IDs within the server virtual machine.

We decide that our file server should do the following:

1. Direct messages to IUCV so that STARMSG can get them.

If we don’t direct the messages to IUCV, they will be displayed on the server
machine’s console. They will not be intercepted by STARMSG.

2. Set up a STOP immediate command and a CMS immediate command (use
ASYNCMS, which is shown in Figure 220 on page 161).

STOP lets us end the PIPE command. CMS lets us direct commands to CMS
from the server console while the pipeline is running.

3. Turn on message trapping (STARMSG).

4. Convert messages from local users and from remote users (users having a
different node ID) to a standard format.

Messages we need to process are delivered from STARMSG in two different
formats. Rather than have two paths through subsequent code, we’ll convert the
messages to a standard format.

5. Filter out any message that does not start with the string $FGET$.

6. Process the requests embodied in these standard-format messages.

7. Reroute messages to the console when the pipeline is stopped.

We could do all of these functions in one lengthy pipeline, but a better approach
would be to create a stage for each major function. By doing so, we can solve the
problem a piece at a time.

Let’s begin by writing the main pipeline, which is shown in Figure 224 on page 166.

Event-Driven Pipelines

Chapter 7. Event-Driven Pipelines 165

GENERIC, FGETMSG, and REQUEST are all stages yet to be written. During
development, it’s useful to create do-nothing stages for those remaining to be
written. This lets you test the pipeline as you develop it. An example do-nothing
stage for FGETMSG might look like this:
/* FGETMSG REXX -- to be added later */
'callpipe (name fgetmsg endchar ?)',

'*:',
'| *: '

Later you can fill in the missing code.

GENERIC REXX—Convert Messages to a Standard Format
There are two formats of messages: those sent by users of your system (local
users) and those forwarded to you from the RSCS machine (from remote users). To
see these formats on your own system, enter the following command:
pipe starmsg | > format data a

Then log on to another user ID on your system and send a message to the user ID
running the PIPE command. Next, log on to a user ID on another system and send
another message. Finally, log on to the user ID running the PIPE command and
enter HMSG to stop it. Then examine the file FORMAT DATA A. It should look like
this:
00000001MIKE1 Hello.
00000001RSCS From VMNODE(MIKE2): Hello again.

MIKE1 is the user ID on the local system, while MIKE2 is the user ID on the remote
system. The node ID of the remote system is VMNODE. RSCS is the user ID of the
local machine that receives messages from remote systems and passes them on to
you.

The form of the message from the remote system may vary depending on which
networking products are used at your installation. By sending messages to yourself
from remote systems and observing the results in FORMAT DATA, you can deduce
the form being used. The example file server assumes remote messages have the
format shown above.

GENERIC REXX, shown in Figure 225 on page 167, determines whether the
message is local or remote. It then transforms the record to a standard format,
which later stages can easily process. The standard format created is:
node_ID user_ID message_text

/* MYSERV EXEC -- a simple file server program. */

'cp set msg iucv' /* Have CP route messages to IUCV */
'pipe (endchar ?)',

'asyncms', /* Set up STOP command and CMS imm. commands */
'?',
'starmsg', /* Trap incoming messages */
'| generic', /* Convert message to generic form */
'| fgetmsg', /* Filter out unwanted messages */
'| request' /* Handle the request */

piperc=rc /* Save the pipeline return code */

'cp set msg on' /* Reroute messages to the console */
exit piperc /* Exit with pipeline return code */

Figure 224. Example File Server: MYSERV EXEC

Event-Driven Pipelines

166 z/VM: CMS Pipelines User’s Guide

One or more blanks are between the node ID, user ID, and the message text. The
message text starts in column 21. GENERIC gets the node IDs of remote systems
from the record itself. However, the node ID of the local system is not on the
record. GENERIC uses the CMS IDENTIFY command to determine it.

GENERIC distinguishes local and remote messages by looking at the user ID that
sent the message. GENERIC uses the CMS IDENTIFY command to determine the
user ID of the RSCS virtual machine.

GENERIC uses a SPECS stage to drop the first 8 bytes of the input record. These
bytes contain the message class number. We already know the messages are class
1 messages, so we don’t need the information. Then NLOCATE is used to
determine whether the message is from a local or remote user.

For local messages, SPECS is used to add the node ID of the local system to the
record. This node ID was determined by issuing a CMS IDENTIFY command and
parsing the response. The node ID is assigned to the variable node. The SPECS
stage is written so that blanks occur between the node ID and the user ID. SPECS
puts the message text starting at column 21, as required for the standard format.

Remote messages are written to the secondary output stream of NLOCATE. The
records written by NLOCATE look like this:
RSCS From VMNODE(JOHN): $FGET$ ALL NOTEBOOK A

The message class number has already been removed. SPECS is used to remove
another 8 bytes from the record, yielding:
From VMNODE(JOHN): $FGET$ ALL NOTEBOOK A

/* GENERIC REXX -- convert the STARMSG record to a generic form */
address command 'PIPE',

'cms identify',
'| var istring'

if rc¬=0 then exit rc
parse var istring . . node . rscs .
'callpipe (name generic endchar ?) ',

'*:', /* Connect input to calling pipeline */
'| specs 9-* 1', /* Drop message class from record */
'| a: nlocate 1-8 /'left(rscs,8)'/', /* Send net msgs to other pipe */
'| specs /'left(node,8)'/ 1', /* Put node in generic record... */

'1-8 nextword', /* ...followed by user ID */
'9-* 21', /* ...and message in column 21 */

'| f: faninany', /* Combine both streams */
'| *:',
'?',
'a:', /* Connect to source of RSCS requests */
'| specs 9-* 1', /* Get rid of the RSCS token */
'| specs words2-* 1', /* Get rid of the keyword FROM */
'| specs pad 40', /* Specify blank as pad character */

'words1 1.20', /* Put first word in first 20 columns */
'words 2-* next', /* Put the rest in column 21 */

'| xlate 1-20 (40) 40 : 40', /* Get rid of (,), and : */
'| f:' /* Connect back to the first pipeline */

exit rc

Figure 225. Example Filter to Create Generic Records: GENERIC REXX

Event-Driven Pipelines

Chapter 7. Event-Driven Pipelines 167

Those 8 bytes contain the user ID of the networking machine, which we no longer
need. Next, we must get rid of the word From. We use SPECS with the WORDS
operand to do it:
...

'| specs words2-* 1', /* Get rid of the keyword FROM */...

Words 2 through the end of the record are copied to the output record starting at
column 1. The first word (From) is not copied. The result of SPECS is:
VMNODE(JOHN): $FGET$ ALL NOTEBOOK A

The record is close to the format we need. We need to get rid of the parentheses
and the colon. The XLATE stage can do it, but XLATE needs a column range on
which to operate. So, we use another SPECS to put the first blank-delimited word in
the first 20 columns of the record. The PAD operand causes blanks (X'40') to be
used to pad the string:
...

'| specs pad 40', /* Specify blank as pad character */
'words1 1.20', /* Put first word in first 20 columns */
'words 2-* next', /* Put the rest in column 21 */

'| xlate 1-20 (40) 40 : 40', /* Get rid of (,), and : */...

The record is now in the correct format:
VMNODE JOHN $FGET$ ALL NOTEBOOK A

GENERIC uses FANINANY to pick up the record from whichever route it travelled,
and then writes that record back to its output stream.

FGETMSG REXX—Filtering Out Unwanted Messages
FGETMSG REXX is a stage that gets rid of any message that does not start with
the string $FGET$. Messages starting with the string $FGET$ were most likely
generated by the FGET requester exec. It is possible that $FGET$ is at the beginning
of the message for some other reason, but that risk is accepted to keep the
example brief.

As Figure 226 shows, we save all rejected messages in the file MYSERV
OTHERMSG.

REQUEST REXX—Process the Request
REQUEST REXX is called after the records have been transformed and filtered.
First it verifies that the user is authorized. Then it verifies the existence of the
requested file. If all is well, it builds a CMS SENDFILE command and executes it. If
an error is detected, a message is sent to the user via the CMS TELL command.

/* FGETMSG REXX -- get rid of messages not starting with $FGET$ */
'callpipe (name fgetmsg endchar ?)',

'*:', /* Message text starts in column 21 */
'| a: locate 21.6 /$FGET$/', /* of the generic records. */
'| *:',
'?',
'a:', /* Rejects flow into this pipeline */
'| >> myserv othermsg a' /* Save them in a file... */

exit rc

Figure 226. Example Filter for $FGET$: FGETMSG REXX

Event-Driven Pipelines

168 z/VM: CMS Pipelines User’s Guide

REQUEST REXX is shown in Figure 227.

REQUEST REXX calls two other stages to check the authorization and to verify that
the file exists. These stages, CHKAUTH and CHKFILE, return the record with either
the word VALID or INVALID inserted at the beginning of it. VALID/INVALID indicates
whether the test was successful.

Most of the work in REQUEST REXX is done with SPECS stages. Data is shuffled
about and command strings are built that are passed to the CMS stage for
execution. Notice that the WORDS operand on SPECS is used to move tokens.
Using column numbers would be too tedious.

The CHKAUTH REXX stage is shown in Figure 228 on page 170. It expects
records that adhere to the generic format described earlier. CHKAUTH writes the
record back to the pipeline with an extra word added to indicate whether the user is
authorized. The word is added to the beginning of the record. VALID is added if the
user is authorized. Otherwise INVALID is added.

/* REQUEST REXX -- process the request in the generic record */

'callpipe (name request endchar ?) ',
'*:',
'| chkauth', /* Check user's authorization */
'| c: find VALID', /* Was it okay? */
'| specs words 2-* 1', /* Remove indicator from record */
'| chkfile', /* Check existence of file */
'| d: find VALID', /* Did it exist? */
'| specs /exec sendfile/ 1', /* Build a SENDFILE command */

'words 5-7 nextword', /* ...add file identifier */
'/to/ nextword', /* ...add TO keyword */
'word3 nextword', /* ...add user ID */
'/at/ nextword', /* ...add AT keyword */
'word2 nextword', /* ...add node ID */

'| cms', /* Execute the SENDFILE */
'|*:',
'?', /* User not authorized */
'c:', /* Send error message */
'| specs /exec tell/ 1', /* Build a TELL command */

'words3 nextword', /* ...add user ID */
'/at/ nextword', /* ...add AT keyword */
'words2 nextword', /* ...add node ID */
'/* You are not authorized./ nextword', /* ...add text */

'| cms', /* Execute the TELL */
'?',
'd:', /* File not found */
'| specs /exec tell/ 1', /* Build a TELL command */

'words3 nextword', /* ...add user ID */
'/at/ nextword', /* ...add AT keyword */
'words2 nextword', /* ...add node ID */
'/* File not found./ nextword', /* ...add text */

'| cms' /* Execute the TELL */
exit rc

Figure 227. Example Request Processor: REQUEST REXX

Event-Driven Pipelines

Chapter 7. Event-Driven Pipelines 169

When a record enters CHKAUTH, it is immediately changed by SPECS. SPECS
moves the user ID and node ID to specific columns, so that they can be compared
by LOOKUP. (See page “LOOKUP Stage” on page 127 for a description of
LOOKUP.) The LOOKUP stage compares the first 17 columns of the record with its
reference list. If the record matches, LOOKUP writes it to its primary output stream.
This record is passed to the primary input stream of SPECS, the next stage. It adds
the word VALID to the beginning of the record. The record is then combined with
INVALID-prefixed records from the secondary output of FANINANY and LOOKUP
and leaves the subroutine pipeline (CHKAUTH) to return to the calling stage.

LOOKUP expects a reference list as its secondary input. The second pipeline
(beginning with < valid users) provides the records that LOOKUP uses to build the
reference. The file VALID USERS is read and the records are translated to
uppercase. VALID USERS should contain a list of valid node/user ID pairs. For
example:
vmnode2 lisa
yournode ted
yournode denise
vmfar1 annette

After the records are translated to uppercase, a SPECS stage moves the node and
user IDs to specific columns. This is necessary for comparisons with the message
records. The label l connects the output stream of SPECS to the secondary input
stream of LOOKUP. LOOKUP builds its reference from the records that SPECS
supplies.

The label l also connects the secondary output stream of LOOKUP to the last
SPECS stage in CHKAUTH REXX. LOOKUP writes records that do not match to its
secondary output stream. SPECS adds the word INVALID to the beginning of these
records and passes them back to the first pipeline through FANINANY.

Referring back to Figure 227 on page 169, you’ll see that REQUEST checks for the
VALID/INVALID keyword. If the record is not valid it sends a message to the user.
Otherwise, it strips off the VALID keyword and calls CHKFILE.

CHKFILE verifies that the requested file exists. Like CHKAUTH, it expects a
standard-format record. It writes the record to its output stream, with a word

/* CHKAUTH REXX -- Verify that a user is authorized */
'callpipe (name chkauth endchar ?)',

'*:',
'| specs words1 1.8 words2 10.8 words 3-* 19', /* Move data */
'| l: lookup 1.17 detail', /* Check user against list */
'| specs /VALID / 1 1-* next', /* Tack on VALID */
'| f: faninany', /* Collect records */
'| *:',
'?',
'< valid users', /* Read in list of valid users */
'| xlate upper', /* Translate list to uppercase */
'| specs words1 1.8 words2 10.8', /* Move data to specific cols. */
'| l:', /* Connect to LOOKUP secondary */
'| specs /INVALID / 1 1-* next', /* Tack on INVALID */
'| f:' /* Feed back to main pipeline */

exit rc

Figure 228. Verify Authorization: CHKAUTH REXX

Event-Driven Pipelines

170 z/VM: CMS Pipelines User’s Guide

prefixed to it indicating whether the file exists.

The STATE stage is used to check the existence of the file. Unfortunately, the input
that STATE needs is the file identifier, not the user ID and node identifier, which are
also contained in the record. So, to use STATE, we must modify the record. Yet, we
need to preserve the original record because that is what CHKFILE must write to its
output stream. In other words, we must destroy the record to check it, but we still
need to keep the original record.

This problem happens frequently when coding pipelines. There are many instances
when you want to save your original record for use later, but must alter it to test it.
While each of these cases is different, consider using FANOUT. FANOUT lets you
make a copy of the record on a different stream. With some ingenuity, you can
combine the streams later in a way that will suit your needs.

Notice that a similar problem occurs in CHKAUTH. In CHKAUTH, however,
LOOKUP is used. LOOKUP accepts a range, which saved us from having to
destroy the record to test it.

In CHKFILE, the record must be modified for STATE, so we use the FANOUT
technique. FANOUT writes a copy of the record to its secondary stream. The stages
connected to that stream pull apart the record and test it. The original record
continues on to FANINANY, which is also used to collect the result of the test. In
our example, the result of the test is a record containing one word: VALID or
INVALID.

The SPECS stage following the FANINANY combines the two records, which yields
the desired result.

/* CHKFILE REXX -- Verify the existence of a file */

'callpipe (name chkfile endchar ?)',
'*:',
'| a: fanout', /* Send a copy of the record */
'| f: faninany', /* Collect original record & VALID|INVALID */
'| specs 1-* 10 read 1-9 1', /* Combine records */
'| *:',
'?',
'a:',
'| specs 1-* 1 / A A A / next', /* Protect against bogus msgs */
'| specs words 4.3 1', /* Extract the file identifier*/
'| b: state', /* Check existence */
'| specs /VALID / 1', /* Exists: create VALID rec. */
'| f:',
'?',
'b:',
'| specs /INVALID / 1', /* Does not exist... */
'| f:'

exit rc

Figure 229. CHKFILE REXX: Verify the Existence of a File

Event-Driven Pipelines

Chapter 7. Event-Driven Pipelines 171

Running the File Server
To run the file server, create a file named VALID USERS that contains the node and
user IDs of valid users. Then enter the MYSERV command:
myserv

MYSERV is ready to process requests. You can disconnect from the server
machine by entering:
#cp disc

Log on to an authorized user ID and use the FGET EXEC to request a file:
fget all notebook

The file, if it exists, will be sent to you. If the file does not exist, the server will send
you a File not found message.

To enter a CMS command while the server is running, prefix the command with cms
as shown in this example:
cms query disk a
LABEL VDEV M STAT CYL TYPE BLKSIZE FILES BLKS USED-(%) BLKS LEFT BLK TOTAL
BAR191 191 A R/W 3 3380 4096 99 121-27 329 450

To stop the server, reconnect to the server machine and enter the STOP immediate
command:
stop

CMS will display a Ready; message containing the return code from the pipeline.
When you stop the server, examine the file MYSERV OTHERMSG to see if the
server machine received messages other than those created by FGET.

Event-Driven Pipelines

172 z/VM: CMS Pipelines User’s Guide

Chapter 8. Using Unit Record Devices

CMS Pipelines has several stages that work with unit record devices. CMS supports
three unit record devices: one virtual reader at address 00C, one virtual punch at
address 00D, and one virtual printer at address 00E. Any output that you direct to
your virtual printer or punch, or any input you receive from your reader, is controlled
by the spooling facilities of the control program (CP). Each output unit is known to
CP as a spool file.

CMS Pipelines lets you work with these spool files. You can write (create) spool
files to the virtual printer or virtual punch. You can read spool files from the virtual
reader. To give you complete control, CMS Pipelines does not issue CP commands
to the virtual device. One exception is the READER stage. It issues a CLOSE
command when it is done. In all other cases, you must issue SPOOL, TAG, and
CLOSE commands as required. Spool files are created by CP when you issue the
CLOSE command.

In this chapter, we assume that you have some familiarity with unit record devices
and spool files. If you want more information about unit record devices and spool
files, refer to z/VM: General Information and to the z/VM: CMS User’s Guide before
reading this chapter. We also assume that you are familiar with channel command
codes used in device I/O. Channel commands are described in the IBM ESA/370*
Reference Summary.

Writing to the Virtual Punch (PUNCH, URO)
CMS Pipelines includes two device drivers that write to the virtual punch: PUNCH
and URO. The important difference between the two is their handling of channel
command codes. CMS Pipelines requires a one-byte channel command code at the
beginning of each record in a punch spool file. PUNCH puts the channel command
code on the records for you before writing the spool file. URO does not add a
channel command code. The records it processes must already have channel
command codes.

One thing to remember when using either stage is that the maximum length for a
punch record is 80 bytes. CP truncates punch records after column 80 without
issuing a message or giving other indication of error.

Let’s look at PUNCH first. PUNCH puts a one-byte channel command code at the
beginning of each record it reads from its input stream. The channel command code
that PUNCH adds is X'41', which indicates that the record is a data record. A X'03'
is also allowed for the channel command code. X'03' is a no-operation. X'03' is
sometimes used for records that describe the file (such as the file name or the
source of the file). If you want to punch records with X'03' channel command codes,
you must use URO instead of PUNCH.

Figure 230 on page 174 shows an example of PUNCH. The CP SPOOL PUNCH
HOLD command prevents the file from being released to the CP spooling queue.
The first PIPE command displays the contents of the file MYBOOK SCRIPT.
Ordinary text records are in the file. The second PIPE command punches the file.
Next, a CP CLOSE command is entered to create the spool file. (Remember that
CMS Pipelines does not issue a CLOSE.) Finally, a QUERY PUNCH command is
entered to show the status of the spool file.

© Copyright IBM Corp. 1991, 2009 173

The next example (Figure 231) shows how to use URO to write to the virtual punch.
By default, the URO stage writes to the virtual printer (device address 00E). To
make URO write to the virtual punch, specify 00D as an operand. In the example, a
SPECS stage is used to add channel command codes to the records from the file
MYBOOK SCRIPT. SPECS puts X'41' in the first column of every record.

Writing to the Printer (PRINTMC, URO)
Two stages write to the virtual printer (device address 00E): PRINTMC and URO.
They have identical functions. However, because URO can write to the virtual
punch as well as the virtual printer, you might find it more useful in execs.

Both stages expect a channel command as the first byte of every record. If the
records you want to print do not contain channel commands, you must add them.

Some files created by programs (such as compiler listings) have carriage control
characters in the first byte of each record. There are two kinds of carriage control
associated with listing files: machine carriage control and ASA carriage control.
Machine carriage control happens to be identical with the channel commands
needed by PRINTMC and URO. You can use these records without alteration. ASA
carriage control, however, is not the same—it must be converted.

To convert ASA carriage control to machine carriage control, use the ASATOMC
stage. ASATOMC reads records from its input stream, converts the carriage control,
and writes the changed records to its output stream. If the input records already

spool punch hold
Ready;
pipe < mybook script | console
This is a test file.
It is used in examples in
the "z/VM: CMS Pipelines User's Guide."
Ready;
pipe < mybook script | punch
Ready;
close punch name mybook1 script
PUN FILE 0047 SENT FROM YOURID PUN WAS 0047 RECS 0003 CPY 001 A HOLD NOKEEP
Ready;
query punch all
ORIGINID FILE CLASS RECORDS CPY HOLD DATE TIME NAME TYPE DIST
YOURID 0047 A PUN 00000003 001 USER 01/16 16:08:22 MYBOOK1 SCRIPT 111/AAA
Ready;

Figure 230. Example of the PUNCH Stage

pipe < mybook script | specs x41 1 1-* 2 | uro 00d
Ready;
close punch name mybook2 script
PUN FILE 0048 SENT FROM YOURID PUN WAS 0048 RECS 0003 CPY 001 A HOLD NOKEEP
Ready;
query punch all
ORIGINID FILE CLASS RECORDS CPY HOLD DATE TIME NAME TYPE DIST
YOURID 0047 A PUN 00000003 001 USER 01/16 16:08:22 MYBOOK1 SCRIPT 111/AAA
YOURID 0048 A PUN 00000003 001 USER 01/16 16:15:34 MYBOOK2 SCRIPT 111/AAA
Ready;

Figure 231. Punching a File with URO

Using Unit Record Devices

174 z/VM: CMS Pipelines User’s Guide

have machine carriage control, ASATOMC writes them unchanged to its output
stream. (To convert from machine carriage control to ASA, use the MCTOASA
stage.)

You can tell whether a file has ASA carriage control by looking at it. If the first byte
of a record with carriage control contains any of the following characters, it has ASA
carriage control:

1 (X'F1') Skip to new page and print the line. The line is printed at the
top of the next page. The numbers 2 through 9 and the letters A
through C are defined for the other channels, but are seldom used.

(blank) Print on the next line.

0 Skip one line and print. That is, print one blank line and then the
data part.

– Skip two lines before printing.

+ Overprint the line on the previous one.

The example in Figure 232 prints a file using PRINTMC. The file being printed,
PIPDUMP LISTING, contains carriage control. The filter ASATOMC is used because
we are not sure what kind of carriage control is used.

Figure 233 shows how to print the same file with the URO stage.

An easy way to print a file without carriage control is by putting blanks in the first
column of each record. Then use ASATOMC to convert those blanks to machine
carriage control. Figure 234 on page 176 shows an example.

spool printer hold
Ready;
pipe < pipdump listing | asatomc | printmc
Ready;
close printer name stall1 listing
PRT FILE 0041 SENT FROM YOURID PRT WAS 0041 RECS 0072 CPY 001 A HOLD NOKEEP
Ready;
query printer all
ORIGINID FILE CLASS RECORDS CPY HOLD DATE TIME NAME TYPE DIST
YOURID 0041 A PRT 00000072 001 USER 01/16 13:30:37 STALL1 LISTING 111/AAA
Ready;

Figure 232. Printing a File with PRINTMC

pipe < pipdump listing | asatomc | uro
Ready;
close printer name stall2 listing
PRT FILE 0042 SENT FROM YOURID PRT WAS 0042 RECS 0072 CPY 001 A HOLD NOKEEP
Ready;
query printer all
ORIGINID FILE CLASS RECORDS CPY HOLD DATE TIME NAME TYPE DIST
YOURID 0041 A PRT 00000072 001 USER 01/16 13:30:37 STALL1 LISTING 111/AAA
YOURID 0042 A PRT 00000072 001 USER 01/16 13:31:08 STALL2 LISTING 111/AAA
Ready;

Figure 233. Printing a File with URO

Using Unit Record Devices

Chapter 8. Using Unit Record Devices 175

Reading Spool Files (READER)
Reading a spool file from your virtual reader involves two operations:

v Reading the records from the virtual reader

v Filtering and deblocking those records as necessary.

The READER stage reads a spool file and writes a record to its primary output
stream for each channel command word (CCW) in the spool file (unless the
MONITOR or 4KBLOCK parameters are specified). The first character of a record is
the channel command code; it is followed by the data part of the record.

READER does not filter and deblock the data. Filtering and deblocking is often
necessary because different facilities create spool files in different formats. The
general formats are:

v Virtual punch format.

This is the simplest format. The first byte of every record contains either X'03' or
X'41'. X'03' indicates no-operation. X'41' marks data records. The maximum
record length is 80 columns. Shorter records are usually padded with blanks.

This format is often used for electronic mail. Some mail facilities do not block
records—one line in the mail file is one data record in the spool file. However,
other mail facilities block the data records before punching them. Not all of the
mail facilities block records in the same way. Two commonly used blocking
formats are NETDATA format and DISK DUMP format.

v Virtual printer format.

In this format, the file contains data records possibly interspersed with control
information (such as forms control buffers). The longest data record is 204
characters for a virtual file for an IBM 3800 printer. A record having a X'5A'
carriage control can be longer. (X'5A' indicates an oversize record with data for
an all-points-addressable printer).

v CP formats.

CP generates spool files with specialized formats (for instance VMDUMP files or
monitor data files).

v Real card reader format.

Files created by a real card reader have a format similar to a virtual punch file.
Such files often have channel command codes of X'42'. Few real card readers
are still being used, so it is not likely that you will have to process this format.

pipe < mybook script | specs 1-* 2 | asatomc | printmc
Ready;
close printer name mybook script
PRT FILE 0043 SENT FROM YOURID PRT WAS 0043 RECS 0003 CPY 001 A HOLD NOKEEP
Ready;
query printer all
ORIGINID FILE CLASS RECORDS CPY HOLD DATE TIME NAME TYPE DIST
YOURID 0041 A PRT 00000072 001 USER 01/16 13:30:37 STALL1 LISTING 111/AAA
YOURID 0042 A PRT 00000072 001 USER 01/16 13:31:08 STALL2 LISTING 111/AAA
YOURID 0043 A PRT 00000003 001 USER 01/16 13:32:07 MYBOOK SCRIPT 111/AAA
Ready;

Figure 234. Printing a File without Carriage Control

Using Unit Record Devices

176 z/VM: CMS Pipelines User’s Guide

So, although READER reads the records of a spool file, additional processing is
usually needed to unravel them. To determine the format of a virtual reader file, use
the CMS RDR command. RDR generates a return code and displays a message for
each type of file recognized.

Virtual Reader Characteristics
The characteristics of your virtual reader affect the results you’ll get when executing
a READER stage. Before using the READER stage, enter CP SPOOL commands
to change the virtual reader characteristics to your liking. The keywords on the
SPOOL command for a virtual reader control several things:

CLASS Sets the class of spool files that can be read by the reader. A spool
file has a class (A through Z or 0 through 9) associated with it;
likewise, a reader can have one of the 36 classes associated with it
or it can be set to read files irrespective of their class (indicated by
setting class * for the reader).

NOCONT Only one spool file is read for each call to READER. This is the
most common way of reading reader files.

CONT All available files are read by a single call to READER.

The files in your reader queue are controlled through a combination of READER
options and the options in effect for the virtual reader on which they are processed.
Table 1 summarizes the disposition of a reader file after it has been processed,
depending on the hold/keep settings specified for the reader, and the READER
options.

Table 1. Disposition of Reader Files Depending upon HOLD/KEEP Settings
READER Options Device Options Disposition
PURGE Any setting The file is purged.
KEEP Any setting The file is retained in user hold status. KEEP

status remains on the file.
HOLD KEEP The file is retained in user hold status.
HOLD NOKEEP The file is retained and remains eligible for

processing on your virtual reader.
NOHOLD/NOKEEP KEEP The file is retained in user hold status.
NOHOLD/NOKEEP HOLD The file is retained and remains eligible for

processing on your virtual reader.
NOHOLD/NOKEEP NOHOLD/NOKEEP The file is purged.

The READER stage reads the first file in the reader queue. Enter a CP ORDER
command to put one or more spool files at the beginning of the reader queue so
that they are processed by the next call to READER. (You can also use the FILE
operand of READER to read a specific spool file.) Use the CP PURGE command to
remove one or more spool files from the system.

READER does not read files in HOLD status; it simply reads the next file if there is
one. Use the CP CHANGE command to change the hold status of a reader file.

READER does not read files having classes that do not match the class setting for
the reader. Use the CP SPOOL command to change the reader class or the CP
CHANGE command to change the classes of the spool files.

READER closes the reader after reading the file. CP purges the file unless the
reader is spooled hold.

Using Unit Record Devices

Chapter 8. Using Unit Record Devices 177

See “Processing Reader Files” on page 252 for an example of an exec that issues
the necessary CP commands before reading the virtual reader.

Reading Printer Files
When reading a printer file residing in a reader, you don’t have to worry about
deblocking data. However, printer files do contain carriage control, so you must
decide whether you want to keep it or remove it. Often you’ll want to retain the
carriage control so you are able to print the file after storing it, but remember to
delete non-translatable channel command codes before printing. If you don’t want to
keep the carriage control, use a SPECS stage to remove the first column of the
record, or the STRNFIND stage to delete the entire record. You can also convert
the carriage control to ASA.

The example in Figure 235 shows how to read a printer file.

The first PIPE command prints the file with machine carriage control. The second
PIPE command reads the file and displays its contents without alteration. (Some
nondisplayable characters are in the response.) The third PIPE command also
reads the file, but it converts the carriage control to ASA before the file is displayed.

Reading Punch Files
This section describes how to read punch files. For our first example, let’s create a
plain punch file and read it. Figure 236 on page 179 shows the screen dialog.

spool printer to * nohold
Ready;
pipe < mybook script | specs 1-* 2 | asatomc | printmc
Ready;
close printer
RDR FILE 0057 SENT FROM YOURID PRT WAS 0057 RECS 0003 CPY 001 A NOHOLD NOKEEP
Ready;
pipe reader file 57 hold | console

This is a test file.
It is used in examples in
the "z/VM: CMS Pipelines User's Guide."
Ready;
pipe reader file 57 hold | mctoasa | console
This is a test file.
It is used in examples in
the "z/VM: CMS Pipelines User's Guide."
Ready;

Figure 235. Reading a Printer File

Using Unit Record Devices

178 z/VM: CMS Pipelines User’s Guide

The SPOOL command directs punched files to your virtual reader and ensures that
there is no hold on the file. The first PIPE command punches the file. The second
PIPE command reads and displays the file.

Notice that there is an extra line in the console display and that there are
nondisplayable characters in the first column. In the example, nondisplayable
characters are represented by asterisks (*). The extra line is a record that does not
contain data (channel command X'03') and the nondisplayable characters are the
channel commands. Figure 237 shows a stage that filters the records.

PLAIN REXX restores the original file:
pipe reader | plain | console
This is a test file.
It is used in examples in
the "z/VM: CMS Pipelines User's Guide."
Ready;

A variation of this format is created by the CMS PUNCH command. The PUNCH
command adds a header record (Figure 238 on page 180). PLAIN REXX is used to
remove channel commands and records that do not contain data.

spool punch to * nohold
Ready;
pipe < mybook script | punch
Ready;
close punch
RDR FILE 0053 SENT FROM YOURID PUN WAS 0053 RECS 0003 CPY 001 A NOHOLD NOKEEP
Ready;
pipe reader | console
*
*This is a test file.
*It is used in examples in
*the "z/VM: CMS Pipelines User's Guide."
Ready;

Figure 236. Reading a Plain Punch File

/* PLAIN REXX -- Select data records and strip command codes */
'callpipe',

'*:',
'| find' '41'X||, /* Keep only data records */
'| specs 2-* 1', /* Remove channel command */
'| *:'

exit rc

Figure 237. A Filter for Reading Plain Punch Files: PLAIN REXX

Using Unit Record Devices

Chapter 8. Using Unit Record Devices 179

To get rid of the header record, add a DROP 1 stage to the pipeline (or specify the
NOHEADER option on CMS PUNCH).

If the records are blocked, you need to add deblocking stages. An example of
deblocking a punch file in NETDATA format is shown in Figure 246 on page 188. To
deblock other formats you need to learn the blocking scheme of the facility that
created the file. Refer to the documentation for the facility.

punch mybook script
RDR FILE 0054 SENT FROM YOURID PUN WAS 0054 RECS 0004 CPY 001 A NOHOLD NOKEEP
Ready;
pipe reader file 54 | plain | console
:READ MYBOOK SCRIPT A1 BAR191 01/16/92 10:17:50
This is a test file.
It is used in examples in
the "z/VM: CMS Pipelines User's Guide."
Ready;

Figure 238. Reading a File Created by CMS PUNCH

Using Unit Record Devices

180 z/VM: CMS Pipelines User’s Guide

Chapter 9. Blocking and Deblocking

CMS Pipelines gives you the ability to convert plain records to blocked records and
to deblock records. There are several reasons why you might want to block records.
In a communications program, for example, you might want to send blocked records
instead of individual records for better performance. Or, in a data management
program, you might want to block records for efficient storage. Naturally, you would
eventually need to deblock the records you have blocked.

You may also have a need to deblock data that another application or that another
system has blocked. For example, you may need to deblock files that originated
from a non-CMS system. If the blocking format matches a format supported by
CMS Pipelines, you can use CMS Pipelines to deblock the data.

Commonly used blocking formats range from simple fixed records put one after the
other to records wrapped in several layers of protocol. CMS Pipelines handles
several blocking formats. Each of the following formats is discussed in its own
section in this chapter:
v Fixed format
v CMS variable format
v MVS variable format
v Line-end character format
v NETDATA format
v IEBCOPY unloaded data set format
v Packed format.

The filters that support these blocking formats are BLOCK, DEBLOCK, IEBCOPY,
PACK and UNPACK. At the end of the chapter we also discuss the FBLOCK stage.
FBLOCK creates fixed-length output records from either variable- or fixed-length
input records. Unlike the other blocking filters, FBLOCK either blocks or deblocks
depending on the relationship of the block size requested to the lengths of the input
records.

When blocking records, stages put records together in a buffer that usually has
room for more than a single record. When the block is created, the filter writes that
block to its output stream. Although it is convenient to say that the filter writes a
block, the filter actually writes a record (just as other filters do). The record just
happens to contain logical records within it. A blocking filter might, for example, read
three input records but write only one output record that contains the three records
read.

Some of the blocking filters let you specify the block size. You can select a block
size that is appropriate for your application. The CMS file system, for instance, uses
block sizes of 512, 1 KB, 2 KB, or 4 KB. OS/MVS simulation access methods
support blocks with up to 32 KB of data.

In some formats, a record can span blocks. This means that part of the record is in
one block and part of it is in the next. In other formats, records cannot span blocks,
which means that the entire record must fit in the block.

Another characteristic of blocking formats, in addition to block size and spanning, is
the technique used to indicate the end of a record. The end of a record can be
defined by a fixed length, a line-end character, or a record descriptor word.

© Copyright IBM Corp. 1991, 2009 181

When the end of a record is defined by a fixed length, you know where a record
ends because each record is the same known length. When line-end characters are
used, a special character (one that is not in the data itself) is used to mark the end
of a record. With this scheme, the lengths of the records can vary. When a record
descriptor word is used, one or more bytes (known as the record descriptor word)
are added to the data portion of the record. The record descriptor word describes
the record and defines its end.

Blocking operations are reversible when it is possible to recover the original format
of the file. This is the case for instance when blocking variable length records in the
MVS variable format, but not in general when deblocking fixed format records that
span blocks.

Fixed Format
In fixed-format blocking, records having fixed lengths are abutted without any
control information. The records cannot span blocks, and the block length must be
a multiple of the record length. Figure 239 shows a 240-byte block that contains
three 80-byte records. Notice that all three records fit neatly into the block.

To block records in fixed format, use the BLOCK stage. BLOCK requires the block
size as an operand. Following the block size, you can optionally specify the FIXED
operand. (BLOCK creates fixed-format blocks by default.)

BLOCK FIXED expects fixed-length records in its input stream. The block size you
specify must be a multiple of the record length. Conceptually, BLOCK FIXED reads
records from its input stream, concatenating them until the block size is reached.
Then BLOCK FIXED writes the block (actually a record containing one or more
logical records) to its output stream.

In the example in Figure 240 on page 183, an existing file (NUMBER LIST A) is
converted by a CMS COPYFILE command to F-format with a record length of 10.
The first PIPE command displays the contents of the file. Note that each record has
some trailing blanks. The last PIPE command shows the use of BLOCK FIXED. It
blocks the records from the file and then displays the blocked records. Notice that
the specified block size 30 is a multiple of the record length 10.

240-Byte Block
┌───────────────────┬───────────────────┬───────────────────┐
│ Record 1 │ Record 2 │ Record 3 │
│ (80 bytes) │ (80 bytes) │ (80 bytes) │
└───────────────────┴───────────────────┴───────────────────┘
─────────────────────── 240 bytes ───────────────────────�

Figure 239. 80-Byte Records in a 240-Byte Block

Blocking and Deblocking

182 z/VM: CMS Pipelines User’s Guide

To deblock the records, use the DEBLOCK stage. Specify the FIXED operand after
the DEBLOCK keyword, followed by the length of the original records. FIXED is the
default for DEBLOCK, so you can omit the FIXED operand if you wish.

Figure 241 shows two examples of deblocking. In the first PIPE command, the
records are blocked by BLOCK and are correctly deblocked using a record length of
10. The second PIPE command shows what happens if you specify the wrong
record size.

CMS Variable Format
In CMS variable format, records are blocked with a half-word (two bytes) record
descriptor indicating the length of the record. The record descriptor is located
immediately before the record. This 2-byte descriptor restricts the length of the
records to be blocked to one less than 64 KB. In general, records are spanned over
blocks; even the record descriptor can be spanned.

The CMS variable format also has an end-of-data (or end-of-file) indication.
End-of-file is indicated with a halfword (record descriptor) of binary zeros if there
are two or more bytes available in the last block. If there is only one byte available,
a single byte of zero indicates end of data. If there are no bytes available on the
last block, the end of the last record indicates end of file.

copy number list a (recfm f lrecl 10
Ready;
pipe < number list | console
one
two
three
four
five
Ready;
pipe < number list | block 30 fixed | console
one two three
four five
Ready;

Figure 240. Blocking Records in Fixed Format

pipe < number list | block 30 fixed | deblock fixed 10 | console
one
two
three
four
five
Ready;
pipe < number list | block 30 fixed | deblock fixed 11 | console
one t
wo th
ree
four f
ive
Ready;

Figure 241. Deblocking Fixed-Format Blocks

Blocking and Deblocking

Chapter 9. Blocking and Deblocking 183

The end-of-file indication is optional. Blocks created by the BLOCK CMS stage do
not have the additional zeros. The DEBLOCK CMS stage successfully deblocks
records even if the end-of-file indication is omitted.

To block records in CMS variable format, use the BLOCK CMS stage. Specify a
block size followed by the CMS operand. Use DEBLOCK CMS to deblock the
records. Do not specify a block size on DEBLOCK CMS. Figure 242 shows an
example of BLOCK CMS and DEBLOCK CMS. When displaying files blocked in
CMS, there are bound to be nondisplayable characters in the record descriptors. In
Figure 242, they appear as quotation marks (").

MVS Variable Format
MVS has four kinds of variable-format records. All four have a 4-byte block
descriptor word at the beginning of each block that describes the block. The first
two bytes contain the length of the complete block including the block descriptor
word. The last two bytes are zero. Blocks are limited to 32,760 bytes including the
block descriptor word. The four kinds of variable-format records are:

V Deblocked variable records.

In this format, the records are blocked, but with only one record per block.
Before each record there is a 4-byte record descriptor word. In the first two
bytes is the length of the record plus the length of the record descriptor.
The second two bytes contain binary zeros. Thus, the longest record
possible is 32,756 bytes.

VB Variable blocked records.

In this format the records are blocked with more than one record per block.
Before each record there is a 4-byte record descriptor word. Each block
contains as many complete records (with their record descriptors) as can fit
within the block. Logical records are not spanned across block boundaries.

VBS Variable block spanned records.

In this format, the records are blocked and records can span blocks. Each
record or part of a record is a segment. Instead of record descriptor words,
there are segment descriptor words. The 4-byte segment descriptor word
contains a two-byte segment length and segmentation flags. The
segmentation flags define whether the segment is:
v A complete record,

pipe < records script | console
This is the first record.
This is the second.
And this is the third.
Ready;
pipe < records script | block 30 cms | console
""This is the first record.""T
his is the second.""And this i
s the third.
Ready;
pipe < records script | block 30 cms | deblock cms | console
This is the first record.
This is the second.
And this is the third.
Ready;

Figure 242. Blocking Records in CMS Variable Format

Blocking and Deblocking

184 z/VM: CMS Pipelines User’s Guide

v The first part,
v The last part, or
v An intermediary part of a record that is neither first nor last.

The length of the record is the sum of the lengths of the segments.
Because the length is not written explicitly, this format supports logical
records longer than 32 KB. In MVS, the user has to handle the
segmentation; in z/VM, CMS Pipelines does it for you.

VS Variable spanned records.

In this format, the records are blocked, but with only one record or a part of
one record per block. Each new record is placed in a new block, even if
there is space available in the previous block. Each record or part of a
record is a segment. Instead of record descriptor words, there are segment
descriptor words. The 4-byte segment descriptor word contains a two-byte
segment length and segmentation flags. The segmentation flags define
whether the segment is:
v A complete record,
v The first part,
v The last part, or
v An intermediary part of a record that is neither first nor last.

The length of the record is the sum of the lengths of the segments.
Because the length is not written explicitly, this format supports logical
records longer than 32 KB. In MVS, the user has to handle the
segmentation; in z/VM, CMS Pipelines does it for you.

DEBLOCK supports all four input formats, but IBM recommends using the V format
(specify with the V operand). DEBLOCK V determines the structure of the blocks
from record descriptor words and segment descriptor words.
pipe tape | deblock v | take 20 | console

When blocking, you must decide the format you want. Code the desired blocking
format as a keyword, for instance BLOCK VBS.

Line-End Character Format
In line-end character format, the end of each logical record is indicated by a specific
character. A line-end character does not follow the last record. The records can
span blocks.

Use the BLOCK filter with the LINEND operand to block records in line-end
character format. You also need to specify a block size and a line-end character.
The character you choose should not occur in the data being blocked (otherwise, it
cannot be deblocked properly). Often the best choice is a hexadecimal value that
cannot be typed on a terminal.

Figure 243 on page 186 shows an example in which X'F0' is used as the line-end
character. X'F0' happens to be a displayable character: 0. A block size of 80 is
used.

Blocking and Deblocking

Chapter 9. Blocking and Deblocking 185

Notice how the hexadecimal value is specified following linend. The hexadecimal
value is not enclosed by single quotation marks. Also notice in the output that a
line-end character is not placed after the last logical record.

Let’s take another example in which the records span blocks. We’ll use the same
LEGUMES SCRIPT file and choose a block size of 5. In the example, the character
0 is specified instead of its hexadecimal value f0; you can use either method to
specify the line-end character. Figure 244 shows the result.

Each displayed line is one block of 5 characters. Since the block size is so small,
most of the records span at least one block.

To deblock records in line-end character format, use the DEBLOCK stage with the
LINEND operand. DEBLOCK reads each record from its input stream, and writes a
record to its output whenever it finds a line-end character (or when it has read the
last record). It does not write the line-end character with the data.

Figure 245 on page 187 shows PIPE commands that block and deblock files. Do
not specify the block size as an operand on DEBLOCK. Instead, specify a LINEND
operand that identifies the line-end character.

pipe < legumes script | console
Peas
Bush beans
Pole beans
Lima beans
Ready;
pipe < legumes script | block 80 linend f0 | console
Peas0Bush beans0Pole beans0Lima beans
Ready;

Figure 243. Blocking Data with Line-End Characters

pipe < legumes script | block 5 linend 0 | console
Peas0
Bush
beans
0Pole
bean
s0Lim
a bea
ns
Ready;

Figure 244. Spanning Blocks with Line-End Characters

Blocking and Deblocking

186 z/VM: CMS Pipelines User’s Guide

NETDATA Format
In the NETDATA format, records are segmented with a 1-byte segment length, a
flag byte, and up to 253 bytes of data. The logical record can be any length. In
general, segments are spanned across blocks.

The flag byte indicates if the record contains data (X'C0') or control information
(X'E0'). Control records have text units to encode the attributes of a data set (such
as the name of the data set). For a complete description of NETDATA format, see
the z/VM: CMS Macros and Functions Reference.

CMS Pipelines supports this format with the NETDATA operand on the BLOCK and
DEBLOCK filters. DEBLOCK TEXTUNIT further deblocks text units in control
records.

NETDATA format is also supported by the CMS NETDATA command, which
processes spool files that are in NETDATA format. In MVS, the INMRCOPY utility
processes files in NETDATA format.

If you want to block records in NETDATA format, you’ll need to learn more about
NETDATA format in the z/VM: CMS Macros and Functions Reference. The BLOCK
stage with the NETDATA operand expects input records with an appropriate flag
byte. The BLOCK stage also expects appropriate control records.

To deblock records in NETDATA format, use the DEBLOCK stage with the
NETDATA operand. Figure 246 on page 188 shows how to deblock a NETDATA file
that is in your reader. (A spool file in NETDATA format that does not contain any
data, such as an acknowledgement, will produce no output.)

pipe < legumes script | block 80 linend f0 | deblock linend f0 | console
Peas
Bush beans
Pole beans
Lima beans
Ready;
pipe < legumes script | block 5 linend 0 | deblock linend 0 | console
Peas
Bush beans
Pole beans
Lima beans
Ready;

Figure 245. Deblocking Data with Line-End Characters

Blocking and Deblocking

Chapter 9. Blocking and Deblocking 187

The READER stage reads the spool file and writes the blocked records to its output
stream. We can’t read these records directly with a DEBLOCK stage because
records from your reader have channel commands in column 1. (See Chapter 8,
“Using Unit Record Devices,” on page 173.) In fact, some of the records may not
contain actual file data. These records have X'03' in column 1. We’re interested in
only data records, which have a X'41' in column 1. So, we use a FIND stage to
select only the data records, and a SPECS stage to create records without channel
commands.

After the records are selected and adjusted, DEBLOCK NETDATA deblocks them.
The output from DEBLOCK also consists of control records and data records. The
last two stages select only the data records and create records without a flag byte.
These records are the original, deblocked records.

IEBCOPY Unloaded Data Set Format
The MVS utility, IEBCOPY, unloads disk data sets in a format that can be restored
to a device other than the one that originally housed the data set. IEBCOPY often
unloads these data sets in VBS format. Each logical record contains data from one
or more physical disk blocks, including record identifiers. End-of-file is indicated by
a record with zero key and data (also on the disk).

There are several sub-files in an unloaded partitioned data set (PDS). The first file
is the directory for the PDS. The remaining files are the members. The directory is
sorted by member name, but the files are ordered by their position in the data set
and not necessarily in the order of the directory.

The sample file OSPDS REXX is shipped with CMS Pipelines (usually it resides on
the MAINT user ID’s 193 disk). It unravels this format by first deblocking the
variable format records (usually with DEBLOCK V). It discards the first two records
defining data set attributes, removes the record identification (and optionally the
key) with IEBCOPY. It processes the directory and sorts it in the order the members
are unloaded. The output is a stacked file with *COPY separators or individual disk
files.

There is no built-in filter to create an unloaded data set. If you write a stage to do it,
remember to skip record zero on each track.

/* DEBNET REXX -- Deblock a reader file in NETDATA format. */
'callpipe',

'reader', /* From reader */
'| find' '41'x||, /* Only data records */
'| specs 2-* 1.80', /* Discard channel command and pad to 80 */
'| deblock netdata', /* Deblock */
'| find' 'c0'x||, /* Only data records */
'| specs 2-* 1', /* Remove control character */
'| *:'

Figure 246. Deblocking NETDATA-Format Files

Blocking and Deblocking

188 z/VM: CMS Pipelines User’s Guide

Packed Format (PACK, UNPACK)
The packed format supported by CMS Pipelines is the same format that CMS uses
when storing packed files. (You can create packed files by using the PACK option
on the CMS COPYFILE command or the SET PACK subcommand of XEDIT.)
Packed records have a fixed-length record format and a record length of 1024.
They contain logical records in which multiple occurrences of a character are
replaced by a count. Logical records can be 64KB or longer.

To pack records, use the PACK stage. To unpack records, use the UNPACK stage.
First, let’s see how to pack records.

When packing records, you must know whether the records have variable lengths
or a fixed length. For our first example, let’s create packed fixed-length records.
Figure 247 shows how. The < stage reads records from an F-format file named
MYCODE ASSEMBLE. When the input records to PACK have a fixed length,
specify the FIXED operand on PACK. PACK reads the fixed-length records from its
input stream, compresses the records and writes the compressed records to its
output stream. Then the records are written to a file named MYCODE PACKED A.

All the records in the input stream to the > stage have a length of 1024. (PACK fills
its last output record with zeros if necessary.)

Now let’s pack variable-length records. This time we’ll read a file named MYBOOK
SCRIPT, which is a V-format file. Assume that the length of the longest record in the
file is 110 bytes. Figure 248 shows how to pack the file.

The < stage reads the file MYBOOK SCRIPT and writes those variable-length
records to its output stream. PACK reads these records, compresses them, and
writes the compressed records to its output stream. Then the > stage writes the
packed records to a file named PACKBOOK SCRIPT A.

Notice that the operands variable and 110 are specified on the PACK stage. What
if you don’t know the length of the longest record? It is still possible to pack the
records, but you must use a multistream pipeline. See the z/VM: CMS Pipelines
Reference for more information about packing variable-length records.

Now that we have packed files, how do we unpack them? Use the UNPACK stage.
UNPACK has no operands. It reads records from its input stream and determines
whether the records are packed. If they are packed, UNPACK converts them to
regular records and writes the converted records to its output stream. If the records
are not packed, UNPACK simply copies the records to its output stream.

pipe < mycode assemble | pack fixed | > mycode packed a fixed
Ready;

Figure 247. Packing Fixed-Length Records

pipe < mybook script | pack variable 110 | > packbook script a fixed
Ready;

Figure 248. Packing Variable-Length Records

Blocking and Deblocking

Chapter 9. Blocking and Deblocking 189

Figure 249 shows a PIPE command that uses the UNPACK stage to unpack the file
if it is packed. The stage unpacks the file INPUT FILE A and displays the last 20
lines.

It’s important to keep all packed records intact if you plan to unpack them. Do not
use filters that select records, such as TAKE or DROP, before the UNPACK stage. If
you do, the remaining records may not look like a packed file to UNPACK. In that
case, UNPACK copies the records to its output stream without converting them. In
Figure 249, for example, the TAKE stage is after the UNPACK stage. Reversing the
order of the stages would likely cause problems.

Creating Fixed-Format Records with FBLOCK
In an earlier section we saw how to block and deblock fixed-length records. One
restriction with the BLOCK stage, however, is that all input records must have the
same length. A second restriction is that the block size must be a multiple of the
record length; that is, the records cannot span blocks.

The FBLOCK stage does not have those restrictions. Like the BLOCK stage,
FBLOCK writes output records having fixed lengths, but that is where the similarity
ends. FBLOCK accepts both variable- and fixed-length records as input. The block
size specified for output records does not have to relate to the size of the input
records in any way.

FBLOCK reads records from its input stream and writes output records of the
requested length. Whenever FBLOCK’s internal buffer is filled, it writes an output
record and begins refilling the buffer. Imagine that FBLOCK concatenates all its
input records into one long string. Then it chops that long string into pieces of the
size you request without regard to the original record boundaries.

Figure 250 on page 191 shows several examples of FBLOCK. The size of the
desired output record is specified as an operand.

pipe < input file a | unpack | take last 20 | console

Figure 249. Unpacking Records

Blocking and Deblocking

190 z/VM: CMS Pipelines User’s Guide

The preceding examples showed FBLOCK working with input records of variable
lengths. FBLOCK also works with input records having a fixed length. In fact, if you
specify a block size that is a multiple of the fixed-length input records, FBLOCK
behaves the same as BLOCK FIXED. If, however, you specify a block size that is
not a multiple of the record length, FBLOCK will span the records as necessary;
BLOCK FIXED will display an error message.

It’s worth looking at an example of spanned fixed-length records. You may
encounter files in this format that you want to deblock. Figure 251 shows an
example in which the block size is 200, but the record length is 80. In this case
some records (record 3 in the example) begin on one block and end on the next.

Figure 252 on page 192 shows PIPE commands that create fixed blocks having
spanned records. The second PIPE command shows how to specify a pad
character: type it after the block size. The example uses a hyphen (-), but you can
use any character or a hexadecimal value (such as f0).

pipe literal bbbb| literal aaa| fblock 3 | console
aaa
bbb
b
Ready;
pipe literal bbbb| literal aaa| fblock 1 | console
a
a
a
b
b
b
b
Ready;
pipe literal bbbb| literal aaa| fblock 10 | console
aaabbbb
Ready;

Figure 250. Creating Fixed-Length Records with FBLOCK

200-Byte Blocks
┌───────────────────┬───────────────────┬─────────┐
│ Record 1 │ Record 2 │ Half of │ ─── Block 1
│ (80 bytes) │ (80 bytes) │ Record 3│
├────────┬──────────┴───────────────────┴─────────┤
│Half of │ Null Data │ ─── Block 2
│Record 3│ │
└────────┴──┘
───────────────── 200 bytes ───────────────────�

Figure 251. 80-Byte Records in a 200-Byte Block

Blocking and Deblocking

Chapter 9. Blocking and Deblocking 191

Let’s see what happens when we try to deblock these by adding a second FBLOCK
stage. Specify the original record length, which we know to be 5. Figure 253 shows
what happens.

As you can see, it is not always possible to reverse the blocking operation when
fixed, spanned records are involved. Usually you also need to know the number of
records that were originally blocked and add a TAKE stage to discard the extras.

pipe literal 12345| literal 12345| fblock 7 | console
1234512
345
Ready;
pipe literal 12345| literal 12345| fblock 7 - | console
1234512
345----
Ready;

Figure 252. Creating Spanned Records with FBLOCK

pipe literal 12345| literal 12345| fblock 7 | fblock 5 | console
12345
12345
Ready;
pipe literal 12345| literal 12345| fblock 7 - | fblock 5 | console
12345
12345

Ready;

Figure 253. Deblocking Spanned Records with FBLOCK

Blocking and Deblocking

192 z/VM: CMS Pipelines User’s Guide

Chapter 10. Using SQL in CMS Pipelines

The SQL device driver lets you use DB2® Server for VM (formerly SQL/DS) from
CMS Pipelines. Before you can use DB2 Server for VM from CMS Pipelines,
several tasks must be done:

v DB2 Server for VM must know about CMS Pipelines. This process is called
preparing the access module, and is documented in the z/VM: CMS Planning
and Administration. It is done once by your system support staff.

v You must be registered as an DB2 Server for VM user. Contact your database
administrator if you are not already registered. Your installation may have granted
everyone connect authority; you can query tables once you have connect
authority.

v To create tables you must have a DBSPACE or write privileges to a space owned
by someone else. Your database administrator can allocate a space to you.

v Issue the SQLINIT command to create the modules required by DB2 Server for
VM.

Basic DB2 Server for VM education is beyond the scope of this book. Refer,
instead, to the DB2 Server for VM book listed in the bibliography at the end of this
book.

SQLSELEC - An Example Program to Format a Query
CMS Pipelines provides an example program named SQLSELEC REXX. You may
need to get access to this program from your system administrator. (Usually it
resides on the MAINT machine’s 193 minidisk.) The filter takes a query as an
operand. It describes the query and formats the result (see the example in
Figure 254). The first line of the response contains the names of the columns
padded with hyphens to their maximum length. The remaining lines are the result of
the query.

pipe sqlselec project_name from sqldba.projects | console
PROJECT_NAME--–
BLUE MACHINE
GREEN MACHINE
ORANGE MACHINE
RED MACHINE
WHITE MACHINE
Ready;
pipe sqlselec salary, name from q.staff where years is null | console
SALARY--- NAME-----
+16086.30 JONES
+13504.60 SMITH
+12954.74 NAUGHTON
+11508.60 SCOUTTEN
Ready;

Figure 254. SQLSELEC Examples

© Copyright IBM Corp. 1991, 2009 193

Creating, Loading, and Querying a Table
The SQL device driver lets you create and maintain DB2 Server for VM tables. Two
ways to create a table are shown in Figure 255. The first example shows how to
issue a single DB2 Server for VM statement as an operand on the SQL device
driver. Specify the CREATE TABLE statement after the EXECUTE operand, as
shown in Figure 255. The second example shows that the SQL EXECUTE reads
statements from its primary input stream.

Use SQL INSERT to load data into the table (Figure 256). The first eight characters
of each record are stored in the column kwd; the remainder of the record is loaded
into the column text. SPECS is used with a conversion option to generate the
halfword length required for the variable character string.

When SQL INSERT is used without other operands, all columns defined for the
table are loaded with data from the input record. SQL gets the length of each
column from DB2 Server for VM. Data must be loaded in the format used by DB2
Server for VM, which usually involves conversion. The SPECS stage copies the first
eight characters of each record without change. It then inserts a halfword field with
the number of bytes remaining in the input record and copies the rest of the input
record after this halfword. This is the format DB2 Server for VM requires for a row
with a fixed and a variable-length character variable.

Figure 257 shows how to use SQL DESCRIBE SELECT to see the format of the
input record or the result of a query.

pipe sql execute create table jtest (kwd char(8), text varchar(80))
Ready;
pipe literal create table jtest (kwd char(8), text varchar(80)) | sql execute
Ready;

Figure 255. Creating an DB2 Server for VM Table

/* Insert rows in an SQL table */
signal on novalue
address command
'PIPE',

'literal DMS Conversational Monitor System'||,
'| literal HCP Control Program'||,
'| literal DMT Remote Spooling Communications Subsystem'||,
'| specs 1.8 1',

'9-* v2c 9',
'| sql insert into jtest'

exit RC

Figure 256. Inserting Rows in an SQL Table

pipe sql describe select * from jtest | console
453 CHAR 8 8 KWD
449 VARCHAR 80 82 TEXT
Ready;

Figure 257. Describing a Query

Using SQL in CMS Pipelines

194 z/VM: CMS Pipelines User’s Guide

Each line describes a column in the table. The first column of the record is the
numeric DB2 Server for VM field code. It is decoded in the next column. A column
with the length (or precision) of the field as perceived by DB2 Server for VM is next.
The following number is the number of characters required to represent the field
when loading with SQL INSERT and when queried by SQL SELECT. Note that the
varying character field (VARCHAR) has two bytes reserved for the length prefix.
Finally, the name of the column is shown.

To query a table, use SQL SELECT. Figure 258 shows an example.

The double quotation marks in Figure 258 represent nondisplayable binary data.
(On your terminal, they may appear as blanks or as other characters.) The first two
positions of each column is the DB2 Server for VM indicator word that tells whether
the column is null. This information may be needed to process the result of a query
in a table with columns that can be null. Figure 259 shows how to suppress these
indicator words. Type the NOINDICATORS operand after SQL. The query seen by
DB2 Server for VM is the same in both cases.

The remaining two nondisplayable bytes contain the length, in binary, of the varying
character field. Use SPECS to discard the columns. An alternative is to use SPECS
to format the binary data (see Figure 260).

Figure 261 on page 196 shows the results of running SQLFORM.

pipe sql select * from jtest | console
""DMT """"Remote Spooling Communications Subsystem
""HCP """"Control Program
""DMS """"Conversational Monitor System
Ready;

Figure 258. Querying a Table

pipe sql noindicators select * from jtest | console
DMT ""Remote Spooling Communications Subsystem
HCP ""Control Program
DMS ""Conversational Monitor System
Ready;

Figure 259. Suppressing Indicator Words

/* SQLFORM EXEC -- query the test table with formatting. */
signal on novalue
'PIPE',

'sql noindicators select * from jtest',
'| specs 1.3 1',

'9.2 c2d 5.2 right',
'11-* 8',

'| console'
exit rc

Figure 260. Formatting the Field Length

Using SQL in CMS Pipelines

Chapter 10. Using SQL in CMS Pipelines 195

SPECS supports conversion between character and binary or floating point. It also
lets you construct varying length character fields. The PIPE command in Figure 262
formats a query against the sample table.

Using SPECS to Convert Fields
Input and output records from SQL have data in the format that is defined for the
table. For instance, when a column is specified as SMALLINT, the corresponding
field in a record is a two-byte binary integer.

Use SPECS to convert from readable formats to the internal ones. The sample
program SQLSELEC shows how to format DB2 Server for VM data on output.
Table 2 shows how to convert some DB2 Server for VM data types. The input
record is assumed to contain a single field.

Table 2. Formatting SQL Data

Data Type Conversion

Fixed-length character
string

This example pads the field to eight bytes:

specs 1-* 1.8

Variable-length
character string

specs 1-* v2c 1

Large integer specs 1-* d2c 1

Small integer specs 1-* d2c 1.2 right

Floating point specs 1-* f2c 1

Decimal There is no SPECS conversion to do this directly. See the following
text.

To convert decimal, use XLATE to change leading blanks to zeros, a plus sign to C,
and a minus sign to D. Use CHANGE to remove the period if the number of
decimals is constant. For instance, if a decimal(5,2) field is always positive and
presented right-aligned in columns 1 to 6 with two decimals (period in column 4):
...xlate *-* space 0|specs 1.3 1 5.6 next /C/ next|spec 1-* x2c 1...

sqlform
DMT 40 Remote Spooling Communications Subsystem
HCP 15 Control Program
DMS 29 Conversational Monitor System
Ready;

Figure 261. Running SQLFORM EXEC

pipe sqlselec * from jtest | console
KWD---- TEXT---
DMT Remote Spooling Communications Subsystem
HCP Control Program
DMS Conversational Monitor System
Ready;

Figure 262. Another SQLSELEC Example

Using SQL in CMS Pipelines

196 z/VM: CMS Pipelines User’s Guide

The subroutine pipeline in Figure 263 processes a number that has a leading sign
and a variable number of decimals (or none). The argument is the number of digits
(including decimals) and the number of decimal digits. The first argument must be
odd.

About Units of Work
DB2 Server for VM commits changes to the database at the end of the unit of work.
The unit of work ends with an explicit COMMIT or by CMS reaching the end of
command. Unless instructed by an option, SQL does an explicit commit and
relinquishes the connection to the database virtual machine when processing is
complete. Use the option COMMIT when you wish the unit of work to be committed
without releasing the connection to the database machine. Use NOCOMMIT in
concurrent SQL stages, and to treat a subsequent SQL stage as the same unit of
work.

The unit of work can also be rolled back. That is, the database is restored to the
state before the unit of work began. SQL automatically rolls the unit of work back
when it receives an error code from DB2 Server for VM. Use SQL ROLLBACK to
do an explicit rollback, possibly in response to a CMS or pipeline error condition.

Using Multiple Streams with SQL
SQL EXECUTE processes multiple input and output streams when the primary input
stream has multiple insert or query statements, or a mixture of these. Each insert
statement causes SQL to read records from a separate input stream, starting with
stream number 1. There must be as many additional input streams defined as there
are insert statements.

/* DEC2PACK REXX -- convert from decimal to packed. */
/* For example: dec2pack 5 2 */
signal on novalue
parse arg digits decimals

'callpipe (endchar ? name DEC2PACK)',
'| *:',
'| strip any /+ /', /* Remove positive sign */
'| p: nfind -', /* Select nonnegative ones */
'| change //+/', /* Put default plus sign */
'| xi: faninany', /* Join with negative ones */
'| xlate - D + C', /* Change sign to /360 code points */
'| c: chop .', /* Split integer and decimals */
'| specs pad 0 2-* 1.' || (digits-decimals) 'right 1' digits+1,
'| o: overlay', /* Overlay decimals */
'| specs 1-* x2c 1', /* Convert to hexadecimal */
'| *:',
'?',
'p:', /* Copy negative numbers */
'| xi:',
'?',
'c:', /* Process decimals */
'| specs 2-*' (digits-decimals+1)'.'decimals 'left',
'| o:'

exit rc

Figure 263. Converting to Packed Decimal

Using SQL in CMS Pipelines

Chapter 10. Using SQL in CMS Pipelines 197

The result of the first query is written to the primary output stream. If the secondary
output stream is defined and connected, the result of the query is written there, and
so on. More queries are allowed than there are streams defined. The output from
the last queries are written to the highest numbered stream defined.

Using Concurrent SQL Stages
You can process the results of a query to construct DB2 Server for VM statements
and queries processed in a subsequent SQL stage. As seen from DB2 Server for
VM, all concurrent SQL stages are considered to be the same program using
multiple cursors.

The option NOCOMMIT must be specified when multiple SQL stages are running
concurrently. Each stage uses its own cursor; the module is prepared for up to ten
cursors.

If one of the stages fails with an DB2 Server for VM error, the unit of work is rolled
back and all other SQL stages fail if they access DB2 Server for VM after the error
occurred. Use a buffer stage to isolate the programs when building DB2 Server for
VM statements from the result of a query. This ensures that the initial query is
complete before a subsequent stage starts processing. You can also process the
query and store the result in a REXX stemmed array. Test the return code and
issue the second SQL pipeline only when the first one ends successfully.

Getting HELP for DB2 Server for VM
DB2 Server for VM stores help information in tables. Your system administrator
must install the DB2 Server for VM HELP text before you can use the HELP SQL
stage to access these tables. You must also have connect privileges and have run
SQLINIT, before using HELP SQL. Type the topic you wish help about as the
argument. This may be a DB2 Server for VM statement or a numeric return code.
Use HELP SQLCODE to get help for the last return code received from DB2 Server
for VM. HELP SQLCODE 1 displays help for the second-to-last return code
received, and so on. Figure 264 shows several HELP stage examples.

Figure 265 shows a session in which a user accesses DB2 Server for VM for the
first time. The user runs the initialization procedure (SQLINIT) and then enters a
PIPE command that gets help.

pipe help sql select
pipe help sql 105
pipe help sqlcode

Figure 264. Using the HELP Stage to Get DB2 Server for VM Help

sqlinit db(sqldba)
Ready;
pipe help sql select
Ready;

Figure 265. Running SQLINIT

Using SQL in CMS Pipelines

198 z/VM: CMS Pipelines User’s Guide

Chapter 11. Using TCP/IP with CMS Pipelines

This chapter introduces you to the use of TCP/IP with CMS Pipelines. Basic TCP/IP
education is beyond the scope of this book. Refer, instead, to the TCP/IP books
listed in the bibliography at the end of this book.

Introduction
At first you may question why you would want to use TCP/IP with CMS Pipelines.
There are very good reasons to do so.

The TCP/IP stages allow you to use CMS Pipelines to send data to and receive
data from other users. You can build clients that will operate with existing servers
and build new servers to accommodate existing and new clients. z/VM users
already have the capability to use popular TCP/IP applications, such as Telnet, FTP
and others, from within REXX programs and CMS Pipelines. The new TCP/IP
stages in CMS Pipelines offer a new interface between CMS Pipelines and the
socket library of the TCP/IP virtual machine. New stages are also provided that
support the UDP (User Datagram Protocol) stage. This allows z/VM users to create
their own TCP/IP network applications that are known as clients and servers. This
can be done without extensive knowledge about socket level communications of
TCP/IP.

The socket library supports two protocols for network applications:

v UDP (user datagram protocol), which allows the flow of datagrams between
network hosts.

v TCP (transmission control protocol), which sets session communications between
two network hosts, one local and one remote, and establishes two data streams
or TCP pipelines, to and from the local and remote hosts.

Using the CMS Pipelines interface, the z/VM user can put CMS Pipelines records
into and retrieve data from TCP data streams or UDP datagrams. This allows z/VM
users to create TCP/IP client/server applications of any desired complexity.

There are two basic methods of accomplishing this:

v Use the CMS Pipelines UDP stage to put CMS Pipelines records into network
datagrams and then get datagrams from the network and put them into CMS
Pipelines using the UDP communication protocol of TCP/IP. The CMS Pipelines
IP2SOCKA and SOCKA2IP stages assist the UDP stage with creating
datagrams.

v Use the CMS Pipelines TCPCLIENT, TCPLISTEN and TCPDATA stages to create
network data streams from CMS Pipelines records. And vice versa, you can get
network data and convert it into CMS Pipelines records. The HOSTBYADDR,
HOSTBYNAME, HOSTID and HOSTNAME stages assist the TCPCLIENT,
TCPLISTEN and TCPDATA stages.

It is important to note that when using TCP/IP with CMS Pipelines, network data
flow and the way records flow in a pipeline are similar. Unlike CMS Pipelines
records, network data streams are not split into records. They are transmitted in
groups of varying size, which is determined by the TCP/IP interface. Network data
streams flow in both directions between network host computers, which differs from
the way data flow through CMS Pipelines stages. The TCPCLIENT, TCPLISTEN
and TCPDATA stages help to exchange network data and pipeline records. These
stages will also connect a local host to a remote host and establish a session with it

© Copyright IBM Corp. 1991, 2009 199

for further data transfer through CMS Pipelines. As a result, z/VM applications can
use this interface to create network servers that develop requests composed of a
stream of records rather than a stream of bytes and create network clients that
send such record requests.

Network communication in TCP/IP is not made from application to application, but
rather from one host with its specific network address to another host. The locations
of network hosts are specified as IP (internet protocol) addresses. Hosts may also
have names that map to IP addresses. The CMS Pipelines TCPCLIENT,
TCPLISTEN, TCPDATA and UDP stages can use either a host name or the IP
address of a host.

The recipient of TCP/IP data, which is the application running on a network host, is
“listening” and “reading” data from a socket bound to a specific receiving port
number. Symmetrically, the application running on a network host can “write” data
into a socket bound to a sending port number. An application that runs CMS
Pipelines can become a client of a network server by using the TCPCLIENT stage.
It specifies the server’s IP address and a port number that the server is using for
listening and reading. A network client connects to the listening server and then
exchanges data with it. The pipeline in this case provides records for TCPCLIENT
to send to the server and retrieves records received from the server. TCPCLIENT
connects to the server and converts records to and from the data stream that the
network server develops. Unless a network server has already started and bound to
its listening port, a client should not start. If it does, the request to connect is
rejected.

Figure 266 shows how a VM host becomes a client:

An application can be a server in a network by using CMS Pipelines with the
TCPLISTEN and TCPDATA stages. TCPLISTEN must be provided with a port
number to which it will bind the socket to accept a connection request from a client.
It will then create a special record for further communication so the TCPDATA stage
can pick this record and become responsible for communicating with the client.
Then TCPLISTEN is free to listen for more clients.

Figure 267 on page 201 shows how a VM host becomes a server:

VM Host Network Host
──────────────────┐ ┌───────────────────

│ │
│ │
│ │

pipeline │ │
│ │───────────┐ │ Network
│ │ │ │
│ │ │ │ Server
│ │ │ │
│ │ └───────────�│

TCPCLIENT │ │
│ │
│ │
│ │
│ │

──────────────────┘ └───────────────────

Figure 266. VM Host as a Client

Using TCP/IP with CMS Pipelines

200 z/VM: CMS Pipelines User’s Guide

Creating a Network Client
The TCPCLIENT stage has two required operands:

IPaddress
This is either the host name of the server or a dotted-decimal IP address.

portnumber
This advises which port number the server is bound to on its host.

It is assumed that a client knows which server it is going to connect to so it knows
the location of the server in the network and the port number that the server is
using.

The TCPCLIENT optional operands are used to specify which way the records
should be sent and received from the network, and how to convert them to and
from the stream of bytes. These optional operands are:

ONERESPonse
Specifies that every input pipeline record is to be sent separately to the server,
after which the client should wait for the response from the server. If this
optional operand is not used, the client will not wait for the response and will
keep sending input records as they arrive. The client will also retrieve network
data, convert the data into records and put them into the output stream as
network data arrive.

Note: TCP does not guarantee arrival of all bytes of a single client message in
one group. So unless a server has the capability to collect split
messages back into one group, this option should not be used.

GREETING
Specifies to the client that the first message received from the server is not a
response, but rather a “greeting”, which is a message sent immediately after the
connection is established and before the first record is sent to the server. If
GREETING is used when a server does not have a greeting to send, two
conditions can occur:

VM Host Network Host
──────────────────┐ ┌───────────────────

│ │
│ │

pipeline │ │
│ │ │
│ │───────────┐ │ Network
│ │ │ │

TCPLISTEN │ │ │ Client
│ │ │ │
│ │ └───────────�│
│ │ │

TCPDATA │ │
│ │
│ │
│ │

──────────────────┘ └───────────────────

Figure 267. VM Host as a Server

Using TCP/IP with CMS Pipelines

Chapter 11. Using TCP/IP with CMS Pipelines 201

v If ONERESPONSE is used, the client will wait for a greeting, even if one
does not exist, until a time-out occurs that will disconnect the client from the
server.

v If ONERESPONSE is not used, the client will not wait for the greeting, but it
may incorrectly treat the first response from the server as a greeting
message.

SF
Specifies that the client should convert the record into a data block before
sending the pipeline record to the server and deblock the data TCPCLIENT
receives; the length precedes the block in a two-byte prefix. The block length
includes the length of the prefix.

SF4
Is similar to SF, but the block length is put in a four-byte prefix.

Note: Using SF or SF4 allows a client to help a server collect a split message
in case TCP fails to deliver it in one group of data. Then it is the
responsibility of the server to collect the split message.

DEBLOCK
Specifies how the pipeline records should be cut out of the network data stream
that is received from the server. If the response from the server consists of lines
that end with some specific code, then the DEBLOCK operands CRLF, LINEND
and STRING enable the client to find this code in order to cut the records. If the
response is expected as a number of blocks of variable length, then the
conversion into a record is made from each block. The block is preceded by a
two- or four-byte prefix providing the block length. The prefix length is included
in the total block length. The DEBLOCK operand SF is used to inform the client
to cut the records out of blocks when the prefix is two bytes long. The SF4
operand is used when the prefix is four bytes long.

The communication related optional operands are used to control the connection.
These options are:

TIMEOUT number
Specifies the time limit in seconds for the client, after which it will disconnect
unless the server sends the response or disconnects.

LINGER number
Forces the client to delay closing the connection after the last record from the
client is sent. This allows the client an opportunity to get the last response from
the server. If not specified, the effective value will probably be 0 (zero).

KEEPALIVe
OOBINLINe
REUSEADDR

These options allow the experienced programmer to turn ON the TCP/IP
communications options, which are used for writing reliable network
applications. For more information about the TCP/IP communications options,
refer to z/VM: TCP/IP Programmer’s Reference, SC24-6239.

GETSOCKName
LOCALIPaddress IPaddress
LOCALport portnumber
USERID tcpipuserid

These are used for tracing and debugging needs.

Using TCP/IP with CMS Pipelines

202 z/VM: CMS Pipelines User’s Guide

Note: The primary input and output streams are used by TCPCLIENT if the TCP
connection remains satisfactory. If an error occurs and the server
disconnects, other errors occur in the TCP connection, or if the client times
out, the TCPCLIENT stage uses its secondary output stream (if it is defined
and connected) to report the problem with either a CMS Pipelines or network
error message.

Example of TCPCLIENT Sending Records to an ECHO Server
For this example, assume that an ECHO server exists on the network and a
program called ECHONET has been started with the default parameters in effect.
(Refer to Appendix D, “ECHONET C Source Code,” on page 271 for the C source
code for this ECHONET server.) It runs on a host named eagle.company.com, and is
listening on port 45678.

This ECHO server can be compiled and run on a z/VM or AIX® system to be called
by the TCP/IP client. Figure 268 is a client REXX program that uses the ECHO
server. The ECHOC user-written stage reads text from a command line and sends
it, word-by-word, to the ECHONET server, expecting every word to be echoed.

After the text that is to be sent is read from the command line, and optionally, the
port of the server set, an end-of-data token (EOD) is added at the end of the text.
Then the text is split to create one pipeline record for each word. All records are
sent to the listening server using the TCPCLIENT stage. The client will wait for a
response after every record is sent because the ONERESPONSE operand was
used. It is important to note that neither the SF, SF4 nor DEBLOCK operands were

/* ECHOC REXX */

host = 'eagle.company.com' /* Server assumed host name */
srv_port = 45678 /* Provide default server port # */

parse arg text "(" port . /* Get port # from server */
if text='' then exit /* No text; no work to do */
if port='' then port=srv_port /* If no port #, use the default */

text = text "EOD" /* Concatenate EOD to end of text*/

'pipe (endchar ?)' ,
' var text' , /* Get text to echo */
' | split' , /* Place each word in a record */
' | q: tcpclient' host port, /* Have client set up connection */

'greeting' , /* Expect greeting message */
'oneresp' , /* Expect one response per input */

'| drop first 1' , /* Drop a greeting message */
'| drop last 1' , /* Drop end-of-data token */
'| console' , /* Display the echoed records */
'?' , /* Provide errors to REXX */
'q:' , /* Obtain error */
'| append literal', /* Provide a blank if no error */
'| var errno' , /* Save error in a variable */

if (errno <> '', /* If errno is present and */
& left(errno,4) <> '0 OK') /* is not "0 OK" */

then say 'connect err:' errno /* display it */

Exit /* Exit */

Figure 268. ECHOC REXX User-written Stage on the Client

Using TCP/IP with CMS Pipelines

Chapter 11. Using TCP/IP with CMS Pipelines 203

used. So every piece of data returned is converted into a record and is put into a
'drop 1' stage, which is used to eliminate the greeting statement from the server
and read just echoes. The next stage, 'drop last', eliminates the last end-of-data
record that was returned. The echo records are displayed and then the client
terminates. If an error occurs and the TCPCLIENT stage terminates prematurely, an
error message is sent to the secondary output stream connected at the label “q:”
and is displayed.

If the client was started in this way:
echoc This is a line of text.

The following is displayed on the console of the client:

This
is
a
line
of
text.
Ready;

Note that the client program is a simple application that sends records to a server
and converts bytes it receives into records. But remember, data in a network are
just streams of bytes. The arrival of these records in order is guaranteed by the use
of the TCP protocol. However, there is no guarantee that these records arrive on
the server grouped in the same way when they were sent by the client. There is
also no guarantee that the data bytes from the server arrive at the client grouped in
the same way that they were sent by the server. Groups of records may arrive
contiguously or may be separated. In other words, this client is not a reliable
application. The ONERESPONSE operand was used in Figure 268 on page 203 so
each record sent would be echoed by the server before the next record is
transmitted. (This is very important for clients in general and for this example in
particular.) The fact that the client waits to perform a read after each record is sent
allows the response to be received and converted back into a record before the
next record is sent to a server. This guarantees that records in a network do not
arrive contiguously. However, there is still no guarantee that client records will not
be split. That is why network clients should send requests in blocks of a
predetermined size or separated with a special code. The TCPCLIENT operands SF
and SF4 are used to create blocks of a predetermined size before sending and
deblocking data after it is received. Thus, it is assumed that the server has the
capability to deblock such data upon receiving it, and then blocking that data before
it is sent. Alternatively, the user can imbed code separators between requests if the
use of SF or SF4 is not sufficient, nor desirable.

It may be beneficial to change this ECHOC example in Figure 268 on page 203 by
removing the ONERESPONSE operand so the client will not wait for every
individual response. If this is done, ensure that the LINGER operand is added to the
TCPCLIENT stage providing a specified number of seconds, such as linger 3. This
will help the modified client to wait for all responses to arrive before closing the
connection. Also, ensure that the drop last stage is removed because the
end-of-data token will probably not remain as a separate record. It is also
recommended that the TIMEOUT operand be used with the TCPCLIENT stage
because the default timeout value may not be satisfactory.

Start the client again by entering:
echoc Check if returned data arrives contiguously.

Using TCP/IP with CMS Pipelines

204 z/VM: CMS Pipelines User’s Guide

The client output in this case is not as predictable. It could look like this:

Checkifreturneddataarriv
escontiguously.EOD

Or like this:

Checkifreturneddataarrivescontiguously.EOD

The SPLIT stage was used in the ECHOC REXX user-written stage (Figure 268 on
page 203) to define each word of text as a pipeline record. However, when
ONERESPONSE is not used, the client records are no longer perceived as
individual pipeline records, but instead, as a stream of bytes. Client records are
converted into network bytes while traveling through the network. So responses
from the server may be received as one large record or smaller ones with no
predetermined way of how returned data is to be converted into pipeline records.

Note: It is recommended that the requests from the client should always be put
into blocks, or that special code separators are used to ensure the requests
are recognized.

Add the SF operand to the TCPCLIENT stage and ensure ONERESPONSE is not
used. After all modifications, the client ECHOC user-written stage appears as in
Figure 269 on page 206:

Using TCP/IP with CMS Pipelines

Chapter 11. Using TCP/IP with CMS Pipelines 205

Stop and restart the ECHO server with the SF operand this time. Run the new
ECHOC user-written stage and notice that every record is returned. For example,
start ECHOC by entering:

echoc The text of line is separated by words, guaranteed.

The client output will look like this:

The
text
of
line
is
separated
by
words,
guaranteed.

In the examples above, it was assumed that the ECHO server was running on the
same platform as the client. So the server understood the end-of-data token (EOD)
from the client. In fact, the greeting message from the server is the record that the
client can use as a token to request the end of communication. A change could be
made to ECHOC that would accept the greeting from the server and use it as an
end-of-data token as the last word sent after the text from the client. Now the client
is platform independent because the text from the client is echoed without
translation and the client gets the end-of-data token that the server provides. This
final version is found in Figure 270 on page 207.

/* ECHOC REXX */
host = 'eagle.company.com' /* Server assumed host name */
srv_port = 45678 /* Provide default server's port */

parse arg text "(" port . /* Get port # from server */
if text='' then exit /* No text; no work to do */
if port='' then port=srv_port /* If no port #, use the default */

text = text "EOD" /* Concatenate EOD to text tail */

'pipe (endchar ?)' ,
' var text' , /* Get text to echo */
' | split' , /* Place each word in a record */
' | q: tcpclient' host port, /* Have client set up connection */

'greeting' , /* Expect greeting */
'SF' , /* Block/deblock data */
'linger 3' , /* Linger on closing for 3 sec */
'timeout 10' , /* Set timeout */

'| drop first 1' , /* Drop greeting */
'| drop last 1' , /* Drop end-of-data token */
'| console' , /* Display the echoed records */
'?' , /* Provide errors to REXX */
'q:' , /* Obtain error */
'| append literal' , /* Provide a blank if no error */
'| var errno' , /* Save error in a variable */

if (errno <> '', /* If errno is present and */
& left(errno,4) <> '0 OK') /* is not "0 OK" */

then say 'connect err:' errno /* display it */

Exit /* Exit */

Figure 269. Enhanced ECHOC REXX User-written Stage on the Client

Using TCP/IP with CMS Pipelines

206 z/VM: CMS Pipelines User’s Guide

In this modified client, the FANIN stage occurs immediately after the text is split.
This takes all TEXT records from the primary input stream. When the primary input
stream disconnects, all TEXT records are taken from a secondary input stream that
is fed from the ELASTIC stage. The only record that ELASTIC sends to FANIN is
the first record received from TCPCLIENT (the TAKE stage is used), which is a
greeting record that was sent from a server. The client output does not differ from
the one presented above, but this time the client can operate with servers running
on non-EBCDIC platforms.

Note: If the client must translate transmitted data to network code, this is easily
accomplished by adding the stage 'xlate 1-* from 1047 to 819' before
TCPCLIENT and 'xlate 1-* from 819 to 1047' after TCPCLIENT.

Creating a Network Server
The most common way to create a network server is to perform two separate tasks:

v Establish a communication session with the client.

/* ECHOC REXX */
host = 'eagle.company.com' /* Server assumed host name */
srv_port = 45678 /* Default server's port # */

parse arg text "(" port . /* Get port # from server */
if text='' then signal Exit /* No text; no work to do */
if port='' then port=srv_port /* If no port #, use the default */

/* Set pipeline that establishes connection; sends split text
followed by end-of-data token received from the server as a
greeting message, receives echoes, and displays them. */

'pipe (endchar ?)',
'var text', /* Get text to echo */
'| split', /* Place each word in a record */
'|s:fanin', /* Get text, then end-of-data */
'| q: tcpclient' host port, /* Have client set up connection */

'greeting', /* Greeting is expected */
'sf', /* Get records blocked/deblocked*/
'linger 3', /* Linger on connect closing */
'timeout 10', /* Disconnect if 10 sec idle */

'| f:fanout', /* Fan to f: to pick greeting */
'| drop first 1', /* Drop greeting */
'| drop last 1', /* Drop end-of-data token */
'| console', /* Display the answer */
'?', /* Provide errors to REXX */
'q:', /* Obtain error */
'| append literal', /* Provide a blank if no error */
'| var errno', /* Save error in variable */
'?f:',
'| take 1', /* Pick just greeting to use */
'| elastic', /* it as end-of-data token */
'|s:' /* after 'text' records */

/* Report if problem occurs. */

if (errno <> '', /* If errno is present and */
& left(errno,4) <> '0 OK') /* is not "0 OK" */

then say 'connect msg:' errno /* display it */

Exit:
exit rc

Figure 270. Further Enhanced ECHOC REXX User-written Stage on the Client

Using TCP/IP with CMS Pipelines

Chapter 11. Using TCP/IP with CMS Pipelines 207

v Provide data exchange with the client.

CMS Pipelines presents two stages to build a server that performs these tasks:

1. TCPLISTEN listens to a port and when the connection request is accepted,
establishes the session with the client and then passes on session credentials
to the next stage.

2. TCPDATA reads the session credentials, sustains the session and
communicates with the client until the client stops or disconnects.

TCPLISTEN continues to wait for new client requests, allowing one server to serve
multiple clients.

TCPLISTEN has one required operand and optional operands that are used to
perform the first task—establishing sessions with clients. The only required operand
is a port number to which the server will be listening. This port number must be
known by clients before they are started. Some of the most popular servers use
“well-known” port numbers. Other, less popular servers must use port numbers from
a pool of available port numbers that do not have conflicts. One way to assign a
port number to a server is to have it assigned by TCP/IP each time the server is
started. This port number is then transmitted to and used by the clients. Any port
number can be assigned to the server unless other servers on the same host use
that same port number. Using port number 0 (zero) forces the TCP/IP virtual
machine to assign a port number from the pool of available ports, which will be a
different port number than those used by other servers on the same host.

All other operands of TCPLISTEN are optional:

BACKLOG maxpending
Specifies to the server the maximum number of clients that can simultaneously
establish a connection with the server without being rejected.

Note: The implementation of TCPLISTEN provides an unlimited number of
simultaneous connections to a server. If BACKLOG maxpending is not
specified, the default value is 10.

GETSOCKName
Specifies that a special record is put into the primary output stream of the
TCPLISTEN stage that describes the initial binding of the server after the server
starts and before the first client connection request is accepted. This is in
binary, not in EBCDIC. It is information that includes a bound port number,
which can be very important if a user starts a server the way the port is
assigned by TCP/IP. Using this option helps to find out the port number
assigned so it can be transmitted to customers who will be using the server.

Note: Other TCPLISTEN optional operands are used for tracing and debugging.

TCPLISTEN has two very important features:

v As soon as the client connection request is accepted and a session between
partners is established, TCPLISTEN writes a special 84 byte record to its primary
output stream that starts with the pipetcp token, so it is easily recognized in a
stream of records. This record, which describes the session that is established, is
created for the TCPDATA stage to take control of the session for further
communication. TCPLISTEN is now ready to listen for the next client and the
TCPDATA stage assumes responsibility for exchanging data with the connected
client.

v TCPLISTEN is always the first stage in a pipeline. So the only way to stop it is to
disconnect its primary output. The other reasons why it stops are due to network

Using TCP/IP with CMS Pipelines

208 z/VM: CMS Pipelines User’s Guide

errors, but this is beyond the control of the user unless PIPMOD STOP was
issued or if a corresponding record was passed into PIPESTOP.

All operands of the TCPDATA stage are optional (previously described under the
TCPCLIENT stage). In fact, running the TCPCLIENT and TCPDATA stages
represent communication peers in the network. Therefore, they use the same
parameters; although the server cannot disconnect from an idle client in a timeout
period of its choice and cannot specify a greeting from the client.

The TCPDATA stage has one very important feature: it consumes records of two
different types from its primary input stream:

v One record with a pipetcp token that TCPLISTEN produces.

v Records that are destined to be sent over the session to a client.

The way the TCPDATA stage communicates with its client is as follows:
1. Receives data from the client over the session.
2. Deblocks the data into records and puts them onto its primary output stream.
3. Reads the records from its primary input stream and then writes the response

back into network over the session.

Therefore, the TCPDATA stage must be put in a data loop where records can be
serviced after being received by TCPDATA and before they are returned to the
network by the same TCPDATA stage.

Figure 271 shows the data flow for the server:

The examples below describe how the server must find a way to disconnect
TCPDATA from TCPLISTEN after the pipetcp token record is received and changes
the TCPDATA input stream to receive records from the “Real Server” (shown in the
diagram above).

Note: If a server is only receiving data from clients, a data loop is not required, but
servers seldom just consume data.

┌───────────┐
│ TCPLISTEN │
└─────┬─────┘

│
┌────────────┤
│ │
│ 	
│ ┌───────────┐ ┌───────────────┐
│ │ ├─────────────�│ │
│ │ TCPDATA │ │ TCP/IP │
│ │ │─────────────┤ │
│ └─────┬─────┘ └───────────────┘
│ │
│ │
│ 	
│ ┌────────────┐
│ │Real Server │
│ └──────┬─────┘
│ │
└────────────┘

Figure 271. Data Flow for the Server

Using TCP/IP with CMS Pipelines

Chapter 11. Using TCP/IP with CMS Pipelines 209

A Simple Server
A server must be written using CMS Pipelines that is capable of replacing the
ECHONET server used above. As with ECHONET, the server will listen on a port
for a connection and then it will echo the data that is received. For simplicity, the
first server has been written to take only one connection request and terminate
when it is done with the client.

For clarity of explanation, the server has been written to operate using two parts,
ECHOS (Figure 272) and ECHOD (Figure 273 on page 211). ECHOS starts the job
and just listens to the port in order to establish the connection as soon as the
connection request is received and accepted. ECHOD then takes control of the
session and exchanges data with the client.

Note: Note that the client ECHOC presented above is capable of communicating
with ECHOS.

ECHOS has only one argument, which is optional. That argument is the port
number on which the server is to listen. If the argument is not present, TCP/IP
assigns the port number. In either case, ECHOS displays the port number to which
it is listening so the client can be informed of what port number it should use.

The first CMS Pipelines stage in the ECHOS EXEC is TCPLISTEN. It requires a
port number as its first argument. If the port number is 0 (zero), TCP/IP assigns an
unused port number. In the example, a TCP/IP or user-assigned port number is
possible. To display the port number to which ECHOS is listening, the optional
operand GETSOCKNAME is specified. It causes TCPLISTEN to put the first record,
which contains the port number that is being used, on its primary output stream
immediately after the server starts. This record is converted to decimal and
displayed. The second record contains pipetcp and it will be passed to the
TCPDATA stage that has been placed in ECHOD.

/* ECHOS EXEC - This server echoes the information that is sent to it.
This is done by establishing a TCP session between a client and this
server.

Note:
If not provided, the port number will be requested from TCP/IP */

parse arg port .

if port='' then port=0 /* Get port # from TCP/IP */

'pipe (endchar ? name echoS)',
'tcplisten' port, /* Obtain the initial request */

'getsockname', /* Requests 2nd record with port#*/
'| take 2', /* Ensure only one request */
'| s: locate /pipetcp/', /* Picks out token record */
'| echoD', /* Take socket and echo data */
'?', /* Displays port number */
's:', /* Obtains port number */
'| specs x0000 1 3-4 3', /* Puts 2 zero bytes before port#*/
'| specs 1-4 c2d 1', /* Changes port # into characters*/
'| strip', /* Removes leading blanks */
'| literal Started on port', /* Places text pipeline */
'| join 1', /* Combines the two records */
'| console', /* Displays it */

Figure 272. ECHOS EXEC

Using TCP/IP with CMS Pipelines

210 z/VM: CMS Pipelines User’s Guide

TCPLISTEN terminates when its output stream is disconnected. Therefore, to limit
the application to only one response, a TAKE 2 stage was added. This terminates
after both of the output records from TCPLISTEN are received, which causes
TCPLISTEN to terminate. TAKE 2 also provides an end-of-file specification that
ECHOD needs.

The LOCATE stage separates the record with the token pipetcp from the record that
contains the port number. This allows the exec to pass this record to ECHOD, and
the other record, the port number record, to the secondary output stream
designated by the label s:.

When the port number record arrives at s:, the two SPECS stages extract the port
number and convert it to characters. This conversion produces leading blanks that
make the display look strange. The STRIP stage eliminates these blanks. The
LITERAL stage introduces the text that is to be displayed along with the port
number so the JOIN stage can combine them. The CONSOLE stage can then
display the result.

The main purpose of the ECHOS EXEC was to pass the record containing a token
to the ECHOD user-written stage. The ECHOD user-written stage takes the
connection with the client, receives data from the client, and echoes the data back
to the client in the loop, which was explained above.

This CMS Pipelines stage accomplishes this by using the TCPDATA stage. The
TCPDATA stage consumes two different types of input records on its primary input
stream. The first record must be the token that was created by TCPLISTEN. Do not
modify this record. The greeting is sent first. The other records that arrive at the
primary input stream of TCPDATA will be sent over the session to the client. FANIN
is used to accomplish the sequencing of records to TCPDATA. This works because
FANIN will read from only one input stream until that stream reaches end-of-file.
Then it will read from another input stream.

/* ECHOD REXX - This is the TCPDATA portion of the server. */
greeting = 'EOD' /* Closing statement this uses */

'callpipe (endchar ? name echoD)',
'*:', /* Obtain the token record */
'| append literal' greeting, /* Send greeting */
'| i: fanin', /* Allow reply to be sent out */
'| q: tcpdata', /* Get and send data to client */
' sf', /* Make them blocked/deblocked */
'| hextype', /* Display it in both char & hex */
'| elastic', /* Prevent stalling */
'| i:', /* Send to TCPDATA for client */
'?', /* Handle errors from TCPDATA */
'q:', /* Get error message */
'| append literal', /* Provide a blank if no error */
'| var errno' /* Save error in a variable */

if (errno <> '') then /* Check if error is present */
ername = word(errno,2)
if (ername <> ECONNRESET) then

say 'error no:' errno /* Report other errors */
else

say 'Server finished after client connection reset.'
exit

Figure 273. ECHOD REXX

Using TCP/IP with CMS Pipelines

Chapter 11. Using TCP/IP with CMS Pipelines 211

The TAKE 2 stage of ECHOS is needed by ECHOD to cause FANIN to disconnect
from its one input stream so that it can start reading its second input stream. This
completes the loop in the diagram above and the server can start receiving data
and sending responses to the network.

When ECHOD is called, a token is passed to it from TCPLISTEN. That record
enters CALLPIPE at the connection stage, *:. It is passed to TCPDATA as the first
record. Having the token requirement met, TCPDATA is now ready to receive data
that will be sent to the client. The APPEND LITERAL statement must receive an
end-of-file before it writes the greeting. This is provided by the TAKE 2 stage in
ECHOS EXEC. This TAKE 2 stage not only terminates TCPLISTEN, but it also
terminates the LOCATE stage that followed it. LOCATE in turn severs the input
stream to ECHOD REXX, which passes it onto the primary input stream of the
APPEND stage. This greeting is the first record sent to the client providing the
information that must be returned to end the conversation. FANIN receives an
end-of-file on its primary input stream and starts reading from its secondary input
stream. When FANIN receives this end-of-file, it starts reading data from its
secondary input stream and passing that data to TCPDATA.

Figure 274 on page 213 is an enhanced version of the diagram in Figure 271 on
page 209. Notice that the secondary input stream is attached to more stages that
are tied to the primary output stream of TCPDATA. This enables data to flow from
the client to TCPDATA, then through the other stages, and then back to TCPDATA
to be sent back to the client. This is how the echo is accomplished.

Using TCP/IP with CMS Pipelines

212 z/VM: CMS Pipelines User’s Guide

When the data leaves TCPDATA, it is sent through a user-written stage called
HEXTYPE (Figure 275 on page 214). HEXTYPE passes any record it receives to its
output without changing it. It also displays the contents of the record in both
character and hexadecimal forms. HEXTYPE is shown in Figure 275 on page 214:

Note: The HEXTYPE user-written stage is only used for tracing the data flow in the
server.

┌────────────────────┐
│ │
│ ┌────────┐ │
│ │ *: | │
│ └───┬────┘ │
│ │ │
│ 	 │
│ ┌────────┐ │
│ │ append | │
│ │greeting| │
│ └───┬────┘ │
│ │ │
│ 	 	
│ ┌───────────────┐
│ │ i:fanin |
│ └───┬───────────┘
│ │
│ 	
│ ┌───────────────────┐ ┌──────────────┐
│ │ ├───�│ │
│ │ q:tcpdata | | TCP/IP |
│ │ │───┤ │
│ └───┬────────────┬──┘ └──────────────┘
│ │ │
│ 	 	
│ ┌──────────┐┌─────────┐
│ │ hextype ││ literal │
│ └───┬──────┘└────┬────┘
│ │ │
│ 	 	
│ ┌──────────┐┌─────────┐
│ │ elastic ││ var │
│ └───┬──────┘└─────────┘
│ │
│ │
└────────────┘

Figure 274. Complete Data Flow for the Server

Using TCP/IP with CMS Pipelines

Chapter 11. Using TCP/IP with CMS Pipelines 213

When records are received from the primary output stream of the TCPDATA stage,
HEXTYPE may not be ready to use them on its primary input stream yet because it
may still be busy with the previous output. A buffer must be created that will
consume records until the next stage is ready for data. To solve this, the CMS
Pipelines ELASTIC stage is used. ELASTIC holds as many records as necessary to
prevent the pipeline from stalling.

ECHOD keeps reading any new data arriving and cannot yet tell the end-of-data
token from other client records sent. So when the client sends this last token and
disconnects, TCPDATA gets the ECONNRESET signal and puts the ERRNO value
to label q:. This is where the VAR ERRNO stage places the error in a REXX
variable called ERRNO and analyzes it with REXX code. To allow for the case
when an error does not exist, a blank line is appended. This allows the REXX
variable to have a null value if no error is present. When ERRNO contains an
expected ECONNRESET value, successful termination is reported. If any other
connection error occurs, the ERRNO value is reported as is.

Here is an example of running these execs:

1. From the server user ID, enter:
echos

Note: If a port number was assigned to this application, then this could have
been entered as:
echos portnumber

/* *** */
/* HEXTYPE REXX Pipeline User-written stage */
/* */
/* Being transparent to records, this stage prints them and */
/* the hexadecimal representation on a console. */
/* Note: This stage terminates when the primary IN or OUT */
/* streams are not defined or disconnected, so it can be used */
/* between stages to trace the record flow. */
/* *** */

h='1de8'x; l='1d60'x /* Set highlight codes */

do forever /* Read in record loop */
'STREAMSTATE INPUT 0' /* Check prime IN state */
if (rc > 0) then do /* Does OUT need verifying? */

'STREAMSTATE OUTPUT 0' /* Check prime OUT */
if (rc > 8) then leave /* Leave if disconnected */

end /* Otherwise, keep looping */
'PEEKTO record' /* Peek next record */
if (rc <> 0) then leave /* Leave if trouble */
dsp_line = '' /* Compose for displaying */
do j = 1 to length(record) /* in every other column */

dsp_line = dsp_line || substr(record, j, 1) || " "
end
say h dsp_line l /* Display the IN record */
say " "c2x(record) /* and its hex form */
'OUTPUT' record /* and put it to OUT stream*/
if (rc <> 0) then leave /* Leave if trouble */
'READTO record' /* Consume it finally */

end /* do forever */

Exit rc*(rc <> 12) /* Convert EOF back to RC=0 */

Figure 275. HEXTYPE REXX

Using TCP/IP with CMS Pipelines

214 z/VM: CMS Pipelines User’s Guide

The ECHOS EXEC immediately displays the port number provided by TCP/IP
(or the port number that was entered):

Started on port 9882

2. From the client user ID, enter:
echoc This is a line of text (9882

Note that the port number that was entered was the port number that ECHOS
provided.

The following is displayed on the console of the server:

T h i s
E38889A2
i s
89A2
a
81
l i n e
93899585
o f
9686
t e x t
A385A7A3
E O D
C5D6C440
Server finished after client connection reset.
Ready;

The following is displayed on the console of the client:

T h i s
i s
a
l i n e
o f
t e x t

Ready;

Notice that both execs terminated. The client ECHOC EXEC terminated
because it accomplished the work and then lingered for three seconds. The
server ECHOS EXEC terminated because it was set up to handle only one
client and then to terminate. This was done by the TAKE 2 stage. Notice also
that the same client (ECHOC) was used with the new server that was used in a
previous example with the ECHONET server written in C.

A Way to Stop One Client/Server Conversation
The normal ways to stop a server are to use PIPMOD STOP or to pass a record to a
PIPESTOP stage. However, if just one conversation between a client and a server
is to be terminated, the following describes a way to accomplish that.

To contact a client, the server sends the client a record. The client uses this record
as the last record it sends back to the server. For explanatory purposes, this record
will be called the “greeting record”.

The ECHOD REXX user-written stage (Figure 273 on page 211) can be altered to
quit when this greeting record is received. For ECHOD REXX to function similar to
the server written in C code (Appendix D, “ECHONET C Source Code,” on page
271), it must also write the greeting back to the client before it quits. The new logic
is added to the previous diagram (Figure 274 on page 213) between the ELASTIC
stage and the secondary input stream of FANIN.

Using TCP/IP with CMS Pipelines

Chapter 11. Using TCP/IP with CMS Pipelines 215

A revised diagram with this new logic added can be found in Figure 276:

The flow of this pipeline is as follows; refer to the alphabetic characters in
Figure 276:

┌────────────────────────┐
│ │
│ ┌─────────┐ │
│ │ *: │ |
│ └────┬────┘ │
│ │ │
│ 	 │
│ ┌─────────┐ │
│ │ append │ |
│ │greeting │ |
│ └────┬────┘ │
│ │ │
│ 	 	
│ ┌───────────────────┐
│ │ i:fanin |
│ └────┬──────────────┘
│ │
│ 	
│ ┌───────────────────┐ ┌───────────────┐
│ │ ├────�│ │
│ (F) │ q:tcpdata sf | | TCP/IP |
│ │ │────┤ │
│ └────┬───────────┬──┘ └───────────────┘
│ │ │
│ 	 	
│ ┌──────────┐┌─────────┐
│ (E) │ hextype ││ literal │
│ └────┬─────┘└────┬────┘
│ │ │
│ 	 	
│ ┌──────────┐┌─────────┐
│ (E) │ elastic ││ var │
│ └────┬─────┘└─────────┘
│ │
│ (A) 	
│ ┌─────────────────────────────┐
│ │ l:locate /'greeting'/ |
│ └───┬───────────────────────┬─┘
│ │ (D) │
│ 	 │
│ ┌─────────────────────┐ │
│ (C) │ d:not fanout | |
│ └───┬─────────────┬───┘ │
│ │ │ │
│ 	3 	2 (B) 	1
│ ┌─────────────────────────────────┐
│ │ g:gate |
│ └─────────────────┬─────────┬─────┘
│ │ │
│ 	 	
│ ┌──────────────────────┐
│ │ m:faninany |
│ └──────┬───────────────┘
│ │
│ │
└──────────────────────────┘

Figure 276. Data Flow for the Server to End a Conversation

Using TCP/IP with CMS Pipelines

216 z/VM: CMS Pipelines User’s Guide

(A) The first step is to use the LOCATE stage to find all records.

(B) Records other than the greeting record are passed through the GATE
stage, collected by FANINANY, and then given to the FANIN stage.

(C) FANOUT makes a copy of the greeting record. However, the first copy of
the greeting record must be written to the secondary output stream. The
NOT stage is used to switch the two output streams of FANOUT. A copy of
the greeting record is sent through GATE, collected by FANINANY, and then
sent to the FANIN stage. Finally, NOT FANOUT writes a record to the
primary input stream of GATE and the GATE stage is closed. When GATE
closes, it disconnects all of the streams that are connected to it. NOT
FANOUT closes because its two output streams are disconnected.

(D) LOCATE then closes because its two output streams are disconnected.

(E) Likewise, ELASTIC and HEXTYPE close, which causes the primary output
stream of TCPDATA to be disconnected.

(F) TCPDATA closes.

Theory of Operation
When records leave the ELASTIC stage they are provided to the primary input
stream of TCPDATA without delay. This is even true for the greeting record.
However, to stop TCPDATA, its primary output stream must be severed when the
greeting is presented by the ELASTIC stage. To sever the primary output stream of
TCPDATA, all of the other streams derived from TCPDATA must be severed. To
accomplish this, the GATE stage was added. The technique is to write the greeting
record to the primary input stream of the GATE stage after all records have been
sent to the secondary input stream of FANIN. All of the derivative output streams
are run through the GATE stage, which is closed after the greeting record has been
provided to TCPDATA. To ensure that TCPDATA has written all of its data before it
closes, none of the stages between the primary output stream of ELASTIC and the
primary input stream of TCPDATA can delay the record.

The ECHOD REXX user-written stage with these modifications is in Figure 277 on
page 218:

Using TCP/IP with CMS Pipelines

Chapter 11. Using TCP/IP with CMS Pipelines 217

A Server that Handles Multiple Clients
There are many ways to set up the server exec to handle several clients. One has
been selected to illustrate some of the principles involved.

First, create an ECHOSND EXEC by copying the ECHOS EXEC (Figure 272 on
page 210) and then make two key changes:

1. To allow TCPLISTEN to accept many clients, the TAKE 2 stage that terminated
it has been eliminated. However, because the TAKE 2 stage also provided an
“end-of-file” to the primary input stream of FANIN this function must be provided
in another place. Notice that removing the TAKE 2 stage also removed the
previous method used to stop the server. To keep this simple, stop the server by
using this command:

PIPMOD STOP

The server could also be stopped by passing a record to a PIPESTOP stage.

2. The second change is to code the server so it will establish multiple executions
of the ECHOD REXX user-written stage. When this is done, there is an
occurrence of ECHOD REXX for each client that connects to this server. This
second change is accomplished by the TCPDEAL REXX user-written stage
(Figure 280 on page 221). This takes a stage name as an argument and hands

/* ECHOD REXX */

/* This is the TCPDATA portion of the server that will stop when it
receives the greeting back from the client. */

greeting = 'EOD' /* Closing statement - use this */
errno = '' /* Initially, no TCP/IP error */

'callpipe (endchar ? name echoD)',
'*:', /* Obtain the token record */
'| append literal' greeting, /* Send greeting (quit text) */
'| i: fanin', /* Allow reply to be sent out */
'| q: tcpdata', /* Get and send data to client */

'sf', /* Block data with length */
'| hextype', /* Display it in both char & hex */
'| elastic', /* Prevent stalling */
'| l:locate /'greeting'/', /* Time to quit? */
'| d:not fanout', /* Write to secondary output */
'| g:gate', /* first, then stop streams */
'? d:', /* Write greeting here */
'| g:', /* Is gate still open? */
'| m:faninany', /* Collect for input to FANIN */
'| i:', /* Send to TCPDATA for client */
'? l:', /* Here if not greeting */
'| g:', /* Is gate still open? */
'| m:', /* Send to TCPDATA for client */
'?', /* Handle errors from TCPDATA */
'q:', /* Get error message */
'| append literal', /* Provide a blank if no error */
'| var errno' /* Save error in variable */

if (errno <> '') then /* If error is present */
say 'error no:' errno /* report it */

exit RC

Figure 277. ECHOD REXX to End a Conversation

Using TCP/IP with CMS Pipelines

218 z/VM: CMS Pipelines User’s Guide

out the new TCP/IP tokens to a specific number of waiting TCPDEALT
user-written stages (Figure 281 on page 222). Each TCPDEALT user-written
stage runs a copy of the ECHOD user-written stage. Therefore, the second
change to ECHOSND EXEC is to add TCPDEAL ECHOD in the location where
ECHOD was called before.

The general strategy remains the same, however, one TCPLISTEN stage will have
several TCPDATA stages to which it can pass tokens.

Figure 278 provides the general flow for this example.

1. When TCPLISTEN is contacted by a client, it writes a token to its primary output
stream.

┌───────────────┐
│ TCPLISTEN │
└───────┬───────┘

│ ┌──────────────────────────────────┐
│ │ │
	 	 │

┌──┐ │
│ DEAL │ │
└────────┬───────────────────┬───────────────────┬───────┘ │

│ │ │ │
│ │ │ │
	 	 	 │

┌────────────────┐ ┌────────────────┐ ┌────────────────┐ │
│ TCPDEALT 0 │ │ TCPDEALT 1 │ │ TCPDEALT 2 │ │
│ │ │ │ │ │ │
│ ┌────────┐ │ │ ┌────────┐ │ │ ┌────────┐ │ │
│ │ *: │ │ │ │ *: │ │ │ │ *: │ │ │
│ └───┬────┘ │ │ └───┬────┘ │ │ └───┬────┘ │ │
│ │ │ │ │ │ │ │ │ │
│ 	 │ │ 	 │ │ 	 │ │
│ ┌────────┐ │ │ ┌────────┐ │ │ ┌────────┐ │ │
│ │ TAKE 1 │ │ │ │ TAKE 1 │ │ │ │ TAKE 1 │ │ │
│ └───┬────┘ │ │ └───┬────┘ │ │ └───┬────┘ │ │
│ │ │ │ │ │ │ │ │ │
│ 	 │ │ 	 │ │ 	 │ │
│ ┌────────┐ │ │ ┌────────┐ │ │ ┌────────┐ │ │
│ │ ECHOD │ │ │ │ ECHOD │ │ │ │ ECHOD │ │ │
│ └────────┘ │ │ └────────┘ │ │ └────────┘ │ │
│ │ │ │ │ │ │
│ OUTPUT 0 │ │ OUTPUT 1 │ │ OUTPUT 2 │ │
└───────┬────────┘ └───────┬────────┘ └───────┬────────┘ │

│ │ │ │
│ │ │ │
	 	 	 │

┌──┐ │
│ FANINANY │ │
└───────┬──┘ │

│ │
│ │
	 │

┌────────────────┐ │
│ ELASTIC │ │
└───────┬────────┘ │

│ │
│ │
└───┘

Figure 278. Data Flow for the Server to Handle Multiple Clients

Using TCP/IP with CMS Pipelines

Chapter 11. Using TCP/IP with CMS Pipelines 219

2. This token is delivered to one of three (in this example) TCPDEALT user-written
stages.

3. Each TCPDEALT user-written stage passes the token to an ECHOD
user-written stage and then writes its stage number to tell the DEAL stage that it
is available.

4. The stage numbers are collected by FANINANY and presented to DEAL when
DEAL needs them.

The resulting ECHOSND EXEC is in Figure 279:

The TCPDEAL user-written stage allows three clients to be connected at one time,
but this may be expanded; this stage uses DEAL SECONDARY. The DEAL stage
passes the tokens that were produced by TCPLISTEN to waiting TCPDEALT
user-written stages. Specifying SECONDARY tells DEAL that its secondary input
stream will be presented with a record that contains the stream number that the
next token should be dealt to. Because DEAL has three output streams, the
secondary input stream must be either 0, 1, or 2. Each of the output streams of the
DEAL stage are connected to a TCPDEALT user-written stage that receives the
token and continues the conversation. TCPDEALT needs to know which of the
output streams of the DEAL stage it is connected to and the name of the stage to
which it hands each token. These are provided as arguments. Each TCPDEALT
user-written stage also has the responsibility of producing the record that is sent to
the secondary input stream of the DEAL stage. In fact, each TCPDEALT
user-written stage must initially write one of these records to seed the process. The
stream identifier records that are created by the TCPDEALT user-written stages are
collected by a FANINANY stage and held in an ELASTIC stage until they are
needed.

The TCPDEAL REXX code is shown in Figure 280 on page 221:

/* ECHOSND EXEC */
/*
** Note: if not provided, the port number will be requested

from TCP/IP. */
parse arg port . /* Allow port # as argument */
if port='' then port=0 /* If not, ask TCP/IP for port #*/

'pipe (endchar ? name echoSnd)',
'tcplisten' port, /* Obtain the initial request */

'getsockname', /* Requests 2nd record with port#*/
'| l: locate /pipetcp/', /* Picks out token record */
'| tcpdeal echoD', /* Take socket and echo data */
'?', /* Displays port number */
'l:', /* Obtains port number */
'| specs x0000 1 3-4 3', /* Puts 2 x00 before port number */
'| specs 1-4 c2d 1', /* Changes port # into characters*/
'| strip', /* Removes leading blanks */
'| literal Started on port', /* Places text pipeline */
'| join 1', /* Combines the two records */
'| console' /* Displays it */
exit RC

Figure 279. ECHOSND EXEC

Using TCP/IP with CMS Pipelines

220 z/VM: CMS Pipelines User’s Guide

The token from TCPLISTEN is passed to each TCPDEALT user-written stage.
TCPDEALT must accept one token at a time and pass it to the TCPDATA stage in
ECHOD REXX. TCPDEALT also must write a record to its primary output stream
when it is ready to accept a token. This record must contain the stream to which
DEAL writes the token. Therefore, the arguments must be the stream number to be
written and the stage to which the token is to be passed. When TCPDEALT is
started, it must first write the stream number to its output stream and wait for a
token to arrive. The stream number is written using OUTPUT, and PEEKTO forces
the stage to wait until a token is available. When the token arrives, CALLPIPE
accepts it, passes it through the TAKE 1 stage and then to the specified stage. The
specified user-written stage in this case is ECHOD REXX. The TAKE 1 stage
disconnects the primary input stream to ECHOD. When ECHOD terminates,
CALLPIPE terminates and the next OUTPUT writes its stream number telling the
DEAL stage that it is ready for more work. PEEKTO makes TCPDEALT wait until
another token is available.

The TCPDEALT REXX code is shown in Figure 281 on page 222:

/* TCPDEAL REXX */
arg echod . /* Obtain the stage to run */

'callpipe (endchar ? name TCPDEAL)',
'|*:', /* Get tokens to be handed out */
'|d:deal secondary', /* Hand out tokens */
'| tcpdealt 0' echod, /* Activate sub-server */
'|f:faninany', /* Collect available stream #s */
'| elastic', /* Hold until needed */
'|d:', /* Tell DEAL - stream available*/
'| tcpdealt 1' echod, /* Activate sub-server */
'|f:', /* Write stream 1 available */
'?d:', /* Tell DEAL- stream available */
'| tcpdealt 2' echod, /* Activate sub-server */
'|f:' /* Write stream 2 available */

exit rc

Figure 280. TCPDEAL REXX

Using TCP/IP with CMS Pipelines

Chapter 11. Using TCP/IP with CMS Pipelines 221

TAKE 1 accomplishes the second function of the TAKE 2 stage that is in ECHOS.
For more information on CALLPIPE, refer to the CALLPIPE discussion in “Using
CALLPIPE to Write Subroutine Pipelines” on page 94.

Here is an example of running these execs:

1. From the user ID that is to be the server, enter:
echosnd 10000

Note: The port number that is to be used was specified.

This exec will immediately display the port number.

Started on port 10000

2. From the user ID that is the client, enter:
echoc First line of text (10000

Note: The port number that was entered was the port number that ECHOS
provided.

The following is displayed on the console of the client:

First
line
of
text
Ready;

3. From the user ID that is the client, enter:
echoc Second line of text providing more fun (10000

The following is displayed on the console of the client:

/* TCPDEALT REXX */
arg number echod /* Obtain stream number and */

/* stage to handle connection */
'output' number /* Write the number of this stage */

/* telling DEAL that it can send */
/* tokens to this stream of TCPDEAL */
/* to this stream of TCPDEAL */
/* Mention this on the console */

say 'Server' number 'is available.'
'peekto' /* Wait for first token to arrive */
do while rc=0 /* while there are tokens available */
'callpipe (name TCPDELAT)', /* Process each token */

'|*:', /* Get the token */
'| take 1', /* After one token, terminate stream */
'|' echod /* Run the stage for each token */

if rc <> 0 then exit rc /* End if bad RC from CALLPIPE */
'output' number /* Ask DEAL for more work */

/* Mention this on the console */
say 'Server' number 'is available.'
'peekto' /* Wait for another token to arrive */
end /* End when DEAL terminates */
exit rc*(rc<>12) /* Tell if RC not 0 or 12 */

Figure 281. TCPDEALT REXX

Using TCP/IP with CMS Pipelines

222 z/VM: CMS Pipelines User’s Guide

Second
line
of
text
providing
more
fun
Ready;

The following is displayed on the console of the server:

Started on port 10000
Server 0 is available.
Server 1 is available.
Server 2 is available.

F i r s t
C68999A2A3
l i n e
93899585
o f
9686
t e x t
A385A7A3
E O D
C5D6C440
Server 0 is available.

S e c o n d
E28583969584
l i n e
93899585
o f
9686
t e x t
A385A7A3
p r o v i d i n g
979996A58984899587
m o r e
94969985
f u n
86A495
E O D
C5D6C440
Server 1 is available.

To stop the server, enter the following from the console of the server:
pipmod stop

Other TCP/IP Related Stages
There are six more TCP/IP related stages that support servers and clients:

HOSTID
HOSTNAME

These stages generate a single output record that is either the host IP address
(HOSTID) where the client or server is currently running or the actual host
name (HOSTNAME). For more information about these stages, refer to the
z/VM: CMS Pipelines Reference.

HOSTBYADDR
This stage converts a host IP address into the host name known to the name
server that serves the local TCP/IP virtual machine.

For more information about this stage, refer to the z/VM: CMS Pipelines
Reference.

HOSTBYNAME
This stage converts any host name known to the name server serving the local

Using TCP/IP with CMS Pipelines

Chapter 11. Using TCP/IP with CMS Pipelines 223

TCP/IP virtual machine into a host IP address. This stage accomplishes the
reverse function of HOSTBYADDR, which converts an IP address to a host
name. For more information about these stages, refer to the z/VM: CMS
Pipelines Reference.

IPSOCKA
SOCKA2IP

These stages are helpful when using the UDP stage. IP2SOCKA converts a
EBCDIC port number and host IP address into a hexadecimal record that UDP
needs for datagrams. This hexadecimal record received by UDP is converted
back to a EBCDIC form by SOCKA2IP For more information about these
stages, refer to the z/VM: CMS Pipelines Reference.

Using TCP/IP with CMS Pipelines

224 z/VM: CMS Pipelines User’s Guide

Chapter 12. Filter Packages

Would you like to improve the performance of stages you have written? Would you
like to share a set of your stages with other users? If so, consider building and
using a filter package.

A filter package is a MODULE or TEXT file that contains user-written stages. These
user-written stages do not necessarily have to be classified as filter stages; they
can be any type of stage. A filter package also contains an entry point table defining
the stages.

A filter package helps improve performance because it can be loaded into virtual
storage as a nucleus extension. Once a filter package is loaded, it is considered to
be an extension to the main pipeline module. Instead of searching for your stages
on disk and loading them into storage, CMS Pipelines finds them immediately in
virtual storage.

If you share your stages with others, you can also share the benefits of a filter
package with them. Usually stages are shared by placing them on a shared
minidisk or on a shared SFS directory. By placing a filter package on the shared
space instead, other users can also load your stages into virtual storage.

There are two ways to load a filter package:

v By entering the name of the MODULE file after CMS Pipelines itself is loaded.
(CMS Pipelines is loaded the first time a PIPE command is executed during a
CMS session.)

v By letting CMS Pipelines do it for you

To have CMS Pipelines automatically load a filter package, enter on the command
line one of four available special names. These special names are discussed in the
next section.

Filter Package Names
CMS Pipelines has four special filter package names. The first time (and only the
first time) a PIPE command is executed during a CMS session, it searches for any
MODULE files having these names. For each name, the PIPE command loads the
first filter package (if any) in the CMS search order that has a matching name.
(Avoid inadvertently using a filter package you don’t want.)

The names, along with their intended uses, are:

PIPPTFF
This filter package can be used to replace built-in stages. If the name of a
stage in this package has the same name as a built-in stage, the stage in
the filter package is used.

Attention: A stage placed in this package should not have a name that is
identical with the name of a pipeline subcommand. If the stage does have
an identical name, it will be used instead of the pipeline subcommand
having the same name. The results are not predictable.

PIPSYSF
PIPSYSF is intended to house stages that are to be shared across the
entire system. Usually this filter package is placed on a system minidisk
that is accessed by all users.

© Copyright IBM Corp. 1991, 2009 225

PIPLOCF
PIPLOCF is intended to house stages that are to be shared by a local
group of users (not all users of the system). Usually this filter package is
placed on a minidisk or SFS directory that is locally shared (perhaps within
a department).

PIPUSERF
PIPUSERF is a user filter package. This filter package is used for private
stages that are used often and should, therefore, remain in storage. Usually
this filter package resides on a user’s personal disk storage.

A filter package having another name is not automatically loaded.

Search Order
When CMS Pipelines searches for a stage, it first searches in virtual storage
through any filter packages that have been loaded. Then it searches for the stage
on disk, using the standard CMS search order. The following list summarizes the
search order:

1. Search through virtual storage as follows:

a. PIPPTFF

b. Built-in stages

c. PIPUSERF

d. PIPLOCF

e. PIPSYSF

f. User filter packages without special names (in the order that they were
loaded).

2. Search on disk using the CMS disk search order.

CMS Pipelines uses the first stage that matches. If, for instance, ADD REXX exists
in PIPUSERF and in PIPSYSF, CMS Pipelines will use the one in PIPUSERF.

Building a Filter Package
This section describes how to build a filter package. Here is a summary of the steps
we’ll be following:

1. Create an input file listing all the REXX and Assembler user-written stages that
will be in the filter package

2. Create a TEXT file from the input file

3. Create a load module

4. Load the filter package.

When building a filter package, you will use the PIPGFTXT EXEC and the
PIPGFMOD EXEC which are on the S-disk.

The details of building a filter package follow. Read all the steps before trying to
build a filter package:

1. Create a file listing the user-written stages.

First, you must create a file that lists the file names and file types of all the
stages you want to include in the filter package. This file may include both
REXX and Assembler user-written stages. REXXES is the default file type for
this input file. However, any file type can be specified.

Filter Packages

226 z/VM: CMS Pipelines User’s Guide

For example, to build a filter package that contains The REXX stages
PROGRAM1 REXX and PROGRAM2 CREXX, and the Assembler stage
PROGRAM3 TEXT, create a file that contains the following:
PROGRAM1 REXX * = 3 REXX
PROGRAM2 CREXX * = 2 CREXX
PROGRAM3 TEXT * MFILTIA 4

The first two fields are the file name and file types of the source program. The
other fields are described as part of the PIPGFTXT EXEC Input File Format
section in the z/VM: CMS Pipelines Reference.

The name you select for the input file will become the name of the filter
package. Suppose you want the filter package to be named MYFILTER. You
would name the file MYFILTER REXXES. Now you are ready to build the TEXT
file.

2. Create a TEXT file.

To create a TEXT file from your input file, use the PIPGFTXT EXEC. PIPGFTXT
by default generates an entry point table as part of the TEXT file.

The TEXT file created has the same name as the input file. If the TEXT file
already exists on your A-disk it will be written over.

The format and operands of the PIPGFTXT EXEC are described in the z/VM:
CMS Pipelines Reference.

For example, to build the filter package MYFILTER TEXT from an input file
named MYFILTER REXXES that contains various user-written stages, enter the
following command:
pipgftxt myfilter

PIPGFTXT EXEC uses the default file name of REXXES and default file mode
of * (asterisk), and by default creates an entry point name of PIPEPT for the
local directory as part of the TEXT file.

This TEXT file is a filter package that can be loaded into storage without
creating a load module. By entering the CMS LOAD command with the name of
the TEXT file, you can use the LDRTBLS stage to run any compiled stage built
into the filter package. This allows you to test a new version of a user-written
stage loaded in virtual storage while still retaining the original stage program in
a filter package loaded as a MODULE file.

If the user-written stages in the filter package (TEXT file) are the only ones that
should be available, or are new, you are ready to create the load module.

3. Create a load module.

To create a load module from the TEXT file and to remove a load module from
storage, if it exists, use PIPGFMOD EXEC.

The format and operands of the PIPGFMOD EXEC are described in the z/VM:
CMS Pipelines Reference.

For example, to create MYFILTER MODULE, enter the following:
pipgfmod myfilter

MYFILTER is the file name of the TEXT file generated by PIPGFTXT EXEC. In
this example the name of a nucleus extension to be dropped is the same as the
specified TEXT file name myfilter. The file MYFILTER MODULE is created or
replaced if it already exists and was loaded as a nucleus extension. It is now
ready to be loaded and used by CMS Pipelines.

When CMS Pipelines loads a filter package having a special name (PIPPTFF,
PIPSYSF, PIPLOCF, or PIPUSERF), it prefixes an asterisk to the name. That is,
CMS Pipelines uses the names *PIPPTFF, *PIPSYSF, *PIPLOCF, and
*PIPUSER. You can use any one of these filter package names as the name of
the nucleus extension to be dropped (the second operand on PIPGFMOD).

Filter Packages

Chapter 12. Filter Packages 227

For example, suppose you are creating a filter package named PIPUSERF. This
new module will replace PIPMOD, the main pipeline module that has already
been loaded as a nucleus extension. The command NUCXDROP PIPMOD
drops the PIPMOD nucleus extension so that the PIPUSERF filter package of
stages can be loaded and used instead. Issue the following PIPGFMOD and
NUCXDROP commands:
pipgfmod pipuserf *pipuser
nucxdrop pipmod

Next, the filter package must be loaded.

4. Load the filter package.

The filter package is now a MODULE file and can be accessed by CMS
Pipelines.

If the file name of the MODULE is PIPPTFF, PIPUSERF, PIPLOCF, or PIPSYSF,
CMS Pipelines loads it automatically the first time a PIPE command is executed
during a CMS session (assuming it is first in the CMS search order).

If the file name of the MODULE is not one of the special names, it is not loaded
automatically. Before loading it, ensure that CMS Pipelines is loaded. CMS
Pipelines is loaded the first time a PIPE command is executed during a CMS
session. To load the module, invoke it by entering its name. For example, to
load MYFILTER as a nucleus extension for CMS Pipelines to use, enter:
myfilter

MYFILTER MODULE loads itself as a nucleus extension. It remains loaded until
the CMS session ends or until a CMS NUCXDROP command is entered for
MYFILTER.

Replaced Filter Package Execs
This chapter described how to use the PIPGFTXT EXEC and the PIPGFMOD
EXEC to build a filter package containing REXX or Assembler stages. These execs
replace previous execs which built a filter package of only REXX stages.
Specifically:
v PIPGFTXT EXEC replaces PIPGREXX EXEC
v PIPGFMOD EXEC replaces PIPLNKRX EXEC.

An existing input file containing only REXX stage names can be updated to include
Assembler stage names and the PIPGFTXT and PIPGFMOD execs will create a
new filter package with all the stages listed in that input file.

Filter Packages

228 z/VM: CMS Pipelines User’s Guide

Chapter 13. Debugging Pipelines

If your pipelines are not working, there are several things you can do to unclog
them. First, ensure the syntax of the pipeline is correct. The PIPE command scans
your pipeline for syntax errors before processing. When PIPE finds syntax errors, it
displays error messages. If you receive a nonzero return code, but no error
messages, CP EMSG may be set off. See “Displaying Pipeline Messages” on page
237.

The messages often provide enough information for you to correct a syntax
problem. To see an explanation of a message, use the HELP command. Also, use
HELP (or the z/VM: CMS Pipelines Reference) to see a complete syntax
description. All pipeline stages are in the PIPE help component. To see a
description of LOCATE, for instance, enter:
help pipe locate

Once the pipeline syntax is corrected and your pipeline runs, you may face other
problems:
v The pipeline does not produce output.
v The pipeline produces the wrong output.
v You receive an unexpected message on the terminal.

Several tools are available to help determine if the pipeline is coded incorrectly or if
there is an error in CMS Pipelines. The tools are described in this chapter. Most
problems can be solved by inspection or by tracing. However, before debugging
your problem, browse through this chapter to see if one of the other techniques are
appropriate.

Tracing Pipelines
This section uses an example to show how tracing and other tools are used to
solve a problem. The example involves a pipeline that is supposed to read an
employee file and list all employees starting with Jack Brown and ending with Betty
Thomas. The employee file contains:
ALBERT, TOM 40 12904
BROWN, JACK 45 13784
BUTLER, JOE 42 13652
MARKS, SAM 40 17246
SMITH, SUE 37 16222
THOMAS, BETTY 46 15623
WHITE, JOHN 40 14523

We compose a pipeline that uses a BETWEEN stage to select the records:
pipe < employee file a | between Brown Thomas|console
FPLBTW338E Not binary data: rown
FPLSCA003I ... Issued from stage 2 of pipeline 1
FPLSCA001I ... Running "between Brown Thomas"
Ready(338);

The messages indicate that we have not correctly written stage 2, which contains
the BETWEEN stage. After checking the BETWEEN stage syntax, we rewrite the
expression with the syntax corrected as follows:
pipe < employee file a | between /Brown/ /Thomas/ |console
Ready;

© Copyright IBM Corp. 1991, 2009 229

This time the pipeline runs, but we do not get any output to the terminal. Because
the reason is not obvious, we will trace the pipeline.

To trace a pipeline, specify the TRACE option on the PIPE command or the TRACE
operand on the RUNPIPE stage. In both cases, the generated trace shows the
stages as they are executed and the data that is passed from one stage to the
next.

Figure 282 shows an excerpt of a trace specified with the TRACE option on the
PIPE command. Notice how the trace option is specified.

You would get the same result if you used the TRACE operand on RUNPIPE. See
Figure 285 on page 232 for an example of using the TRACE operand on RUNPIPE.

Tracing a PIPE command that contains a user-written stage may produce slightly
different output. For example, if you use CALLPIPE or ADDPIPE with the TRACE
option in your user-written stage, the numbering of the stages in the trace output for
CALLPIPE or ADDPIPE begins with one regardless of the stage numbering in the
original PIPE command. However, if the CALLPIPE or ADDPIPE begins with a
connector, the connector is counted as the first stage. When CALLPIPE or
ADDPIPE has finished processing, the original connection of the stages in the PIPE
command are restored and numbering of the stages continues as if the CALLPIPE
or ADDPIPE was not issued.

In Figure 283 on page 231 FIXED is a user-written stage that contains the following:

pipe (trace) < employee file a | between /Brown/ /Thomas/ | console
FPLFPI402I Calling Syntax Exit
FPLSCA003I ... Issued from stage 1 of pipeline 1
FPLSCA001I ... Running "< employee file a"
FPLDSQ028I Starting stage with save area at X'03DA1388 03F6F5B8 00000000'
FPLMSG003I ... Issued from stage 2 of pipeline 1
FPLMSG001I ... Running "between /Brown/ /Thomas/"
FPLDSP538I Query state of INPUT stream 1
FPLMSG003I ... Issued from stage 2 of pipeline 1
FPLMSG001I ... Running "between /Brown/ /Thomas/"
FPLDSQ031I Resuming stage; return code is -4
FPLMSG003I ... Issued from stage 2 of pipeline 1
FPLMSG001I ... Running "between /Brown/ /Thomas/"
FPLDSP537I Commit level 0
FPLMSG003I ... Issued from stage 2 of pipeline 1
FPLMSG001I ... Running "between /Brown/ /Thomas/"
FPLDSQ028I Starting stage with save area at X'03DA1228 00EBA408 00000000'
FPLMSG003I ... Issued from stage 1 of pipeline 1
FPLMSG001I ... Running "< employee file a"
FPLDSP035I Output 80 bytes
FPLMSG003I ... Issued from stage 1 of pipeline 1
FPLMSG001I ... Running "< employee file a"
FPLDSP039I ... Data: "ALBERT, TOM 40 12904"
FPLDSQ031I Resuming stage; return code is 0
FPLMSG003I ... Issued from stage 2 of pipeline 1
FPLMSG001I ... Running "between /Brown/ /Thomas/"
FPLDSP034I "Locate" called
FPLMSG003I ... Issued from stage 2 of pipeline 1
FPLMSG001I ... Running "between /Brown/ /Thomas/"...

Figure 282. Example of Trace Output

Debugging Pipelines

230 z/VM: CMS Pipelines User’s Guide

/* FIXED REXX */
'callpipe *: | CHOP 80 | PAD 80 | *:'

The numbers in parentheses indicate the stage numbers that are displayed in the
trace output if both the PIPE command and the CALLPIPE pipeline subcommand
are traced.

Note that the number of the CHOP stage is 2 because the input connector counts
as stage 1.

Usually the trace output is displayed on the console. However, because the trace
output can be lengthy, it is often better to direct it to a file instead.

Tracing to a File
To direct trace output to a file, use the RUNPIPE stage. You can specify a trace by
using the TRACE option on the PIPE command that is issuing the RUNPIPE stage
(see Figure 284) or you can use the TRACE operand on RUNPIPE (see Figure 285
on page 232).

This is another way to accomplish the same thing:

Stages from ┌───────┐ ┌───────┐ ┌───────┐ ┌───────┐
Original │ cms ├───�│ split ├┐ ─┤ fixed ├─ ┌─�│ > │
PIPE Command └───────┘ └───────┘│ └───────┘ │ └───────┘

(1) (2) │ │ (4)
│ │

Stages from │ ┌──────┐ ┌───────┐ │
FIXED REXX └─�│ chop ├──�│ pad ├─┘
User-Written └──────┘ └───────┘
Stage (2) (3)

Figure 283. Numbering Stages of a Pipeline When CALLPIPE Is Running

/* Directing Trace Output to a File with RUNPIPE */
mypipe = '(trace) < employee file a',

'| between /Brown/ /Thomas/|console'
address command
'PIPE',

'var mypipe', /* Write variable MYPIPE to output stream */
'| runpipe', /* Run it */
'| > trace file a' /* Put resultant trace in file */

Figure 284. Directing Trace Output to a Data Set (RUNPIPE with PIPE TRACE Option)

Debugging Pipelines

Chapter 13. Debugging Pipelines 231

The RUNPIPE stage reads its input stream and executes the records as pipelines.
RUNPIPE writes any terminal output from the execution of the pipeline to its output
stream. The stage following RUNPIPE writes the output to the file TRACE FILE A.
In our examples, the output from the pipeline consists of trace records.

Figure 286 shows an excerpt of the trace file output. Line numbers are shown for
illustration (they do not appear in the actual trace records):

Figure 286 shows the processing for a record we believe should have been
selected. To find out why there is not any output at the terminal, look at the output
from stage to stage. The highlighting in the excerpt in Figure 287 on page 233
shows what pattern to focus on when scanning this sort of trace:

/* -- Tracing to a file using TRACE argument of RUNPIPE */
mypipe = '< employee file a',

'| between /Brown/ /Thomas/|console'
address command
'PIPE',

'var mypipe', /* Write variable MYPIPE to output stream */
'| runpipe trace', /* Run it */
'| > trace file a' /* Put resultant trace in file */

Figure 285. Directing Trace Output to a Data Set (Using RUNPIPE TRACE)

...
Lines

FPLDSQ031I Resuming stage; return code is 0 1
FPLMSG003I ... Issued from stage 1 of pipeline 1 2
FPLMSG001I ... Running "< employee file a" 3
FPLDSP035I Output 80 bytes 4
FPLMSG003I ... Issued from stage 1 of pipeline 1 5
FPLMSG001I ... Running "< employee file a" 6
FPLDSP039I ... Data: "BROWN, JACK 45 13784" 7
FPLDSQ031I Resuming stage; return code is 0 8
FPLMSG003I ... Issued from stage 2 of pipeline 1 9
FPLMSG001I ... Running "between /Brown/ /Thomas/" 10
FPLDSP033I Input requested for 0 bytes 11
FPLMSG003I ... Issued from stage 2 of pipeline 1 12
FPLMSG001I ... Running "between /Brown/ /Thomas/" 13
FPLDSQ031I Resuming stage; return code is 0 14
FPLMSG003I ... Issued from stage 2 of pipeline 1 15
FPLMSG001I ... Running "between /Brown/ /Thomas/" 16
FPLDSP034I "Locate" called 17
FPLMSG003I ... Issued from stage 2 of pipeline 1 18
FPLMSG001I ... Running "between /Brown/ /Thomas/" 19
FPLDSQ031I Resuming stage; return code is 0 20
FPLMSG003I ... Issued from stage 1 of pipeline 1 21
FPLMSG001I ... Running "< employee file a" 22
FPLDSP035I Output 80 bytes 23
FPLMSG003I ... Issued from stage 1 of pipeline 1 24
FPLMSG001I ... Running "< employee file a" 25
FPLDSP039I ... Data: "BUTLER, JOE 42 13652" 26...

Figure 286. Console Output from Directing Trace Output to a Data Set

Debugging Pipelines

232 z/VM: CMS Pipelines User’s Guide

Stage 1, which reads EMPLOYEE FILE A, has OUTPUT messages, but stage 2
does not. Stage 2, which contains the BETWEEN stage, is the culprit.

We see on line 7 that the output from stage 1 is BROWN, JACK 45 13784. The
output from stage 1 is the input to stage 2. So, why does the BETWEEN stage not
select the record?

A hint is on line 10. In the statement between /Brown/ /Thomas/, mixed case is
used, but the data is in uppercase. Remembering that CMS Pipelines is case
sensitive, we found the answer to our problem. Rerunning the command with the
names in uppercase produces the output that we want.
pipe < employee file a | between /BROWN/ /THOMAS/| console
BROWN, JACK 45 13784
BUTLER, JOE 42 13652
MARKS, SAM 40 17246
THOMAS, BETTY 46 15623
Ready;

Figure 288 on page 234 is part of the trace from when the correct pipeline
expression was entered:

Lines
FPLDSQ031I Resuming stage; return code is 0 1
FPLMSG003I ... Issued from stage 1 of pipeline 1 2
FPLMSG001I ... Running "< employee file a" 3
FPLDSP035I Output 80 bytes 4
FPLMSG003I ... Issued from stage 1 of pipeline 1 5
FPLMSG001I ... Running "< employee file a" 6
FPLDSP039I ... Data: "BROWN, JACK 45 13784" 7
FPLDSQ031I Resuming stage; return code is 0 8
FPLMSG003I ... Issued from stage 2 of pipeline 1 9
FPLMSG001I ... Running "between /Brown/ /Thomas/" 10
FPLDSP033I Input requested for 0 bytes 11
FPLMSG003I ... Issued from stage 2 of pipeline 1 12
FPLMSG001I ... Running "between /Brown/ /Thomas/" 13
FPLDSQ031I Resuming stage; return code is 0 14
FPLMSG003I ... Issued from stage 2 of pipeline 1 15
FPLMSG001I ... Running "between /Brown/ /Thomas/" 16
FPLDSP034I "Locate" called 17
FPLMSG003I ... Issued from stage 2 of pipeline 1 18
FPLMSG001I ... Running "between /Brown/ /Thomas/" 19
FPLDSQ031I Resuming stage; return code is 0 20
FPLMSG003I ... Issued from stage 1 of pipeline 1 21
FPLMSG001I ... Running "< employee file a" 22
FPLDSP035I Output 80 bytes 23
FPLMSG003I ... Issued from stage 1 of pipeline 1 24
FPLMSG001I ... Running "< employee file a" 25
FPLDSP039I ... Data: "BUTLER, JOE 42 13652" 26

Figure 287. Highlighted Console Output from Directing Trace Output to a Data Set

Debugging Pipelines

Chapter 13. Debugging Pipelines 233

Notice that all of the stages now have output for a record that satisfies the
BETWEEN criteria.

Lines
FPLDSQ031I Resuming stage; return code is 0 1
FPLMSG003I ... Issued from stage 1 of pipeline 1 2
FPLMSG001I ... Running "< employee file a" 3
FPLDSP035I Output 80 bytes 4
FPLMSG003I ... Issued from stage 1 of pipeline 1 5
FPLMSG001I ... Running "< employee file a" 6
FPLDSP039I ... Data: "BROWN, JACK 45 13784" 7
FPLDSQ031I Resuming stage; return code is 0 8
FPLMSG003I ... Issued from stage 2 of pipeline 1 9
FPLMSG001I ... Running "between /BROWN/ /THOMAS/" 10
FPLDSP035I Output 80 bytes 11
FPLMSG003I ... Issued from stage 2 of pipeline 1 12
FPLMSG001I ... Running "between /BROWN/ /THOMAS/" 13
FPLDSP039I ... Data: "BROWN, JACK 45 13784" 14
FPLDSQ028I Starting stage with save area at X'03DA14E8 03F6F700 00000000' 15
FPLMSG003I ... Issued from stage 3 of pipeline 1 16
FPLMSG001I ... Running "console" 17
FPLDSP034I "Test if PIPRUNEVENTS active" called 18
FPLMSG003I ... Issued from stage 3 of pipeline 1 19
FPLMSG001I ... Running "console" 20
FPLDSQ031I Resuming stage; return code is 0 21
FPLMSG003I ... Issued from stage 3 of pipeline 1 22
FPLMSG001I ... Running "console" 23
FPLDSP034I "Locate" called 24
FPLMSG003I ... Issued from stage 3 of pipeline 1 25
FPLMSG001I ... Running "console" 26
FPLDSQ031I Resuming stage; return code is 0 27
FPLMSG003I ... Issued from stage 3 of pipeline 1 28
FPLMSG001I ... Running "console" 29
BROWN, JACK 45 13784 30
FPLDSP035I Output 80 bytes 31
FPLMSG003I ... Issued from stage 3 of pipeline 1 32
FPLMSG001I ... Running "console" 33
FPLDSP039I ... Data: "BROWN, JACK 45 13784" 34

Figure 288. Console Output of Trace with Correct Pipeline Expression Set

Debugging Pipelines

234 z/VM: CMS Pipelines User’s Guide

Tracing Individual Stages
Tracing generates very large trace files, therefore, you may want to trace just a few
stages. Put the TRACE option at the beginning of the stage you wish to trace, as
shown in Figure 289.

You cannot trace an individual stage using the TRACE operand on the RUNPIPE
stage.

pipe literal test | (trace) literal trace selectivity | console
FPLDSQ028I Starting stage with save area at X'03DA1390 03F6F6B0 00000000'
FPLMSG003I ... Issued from stage 2 of pipeline 1
FPLMSG001I ... Running "literal trace selectivity"
FPLDSP035I Output 18 bytes
FPLMSG003I ... Issued from stage 2 of pipeline 1
FPLMSG001I ... Running "literal trace selectivity"
FPLDSP039I ... Data: "trace selectivity"
trace selectivity
FPLDSQ031I Resuming stage; return code is 0
FPLMSG003I ... Issued from stage 2 of pipeline 1
FPLMSG001I ... Running "literal trace selectivity"
FPLDSP034I "SHORT" called
FPLMSG003I ... Issued from stage 2 of pipeline 1
FPLMSG001I ... Running "literal trace selectivity"
FPLDSQ031I Resuming stage; return code is 0
FPLMSG003I ... Issued from stage 2 of pipeline 1
FPLMSG001I ... Running "literal trace selectivity"
FPLDSP020I Stage returned with return code 0
FPLMSG003I ... Issued from stage 2 of pipeline 1
FPLMSG001I ... Running "literal trace selectivity"
test
Ready;

Figure 289. Tracing Individual Stages (TRACE Option)

Debugging Pipelines

Chapter 13. Debugging Pipelines 235

Controlling Trace Messages
You can suppress some trace messages by specifying the NOMSGLEVEL option.
NOMSGLEVEL lets you selectively suppress certain levels of messages. Figure 290
shows an example in which some messages are suppressed for the stage being
traced. See the z/VM: CMS Pipelines Reference for more information about
NOMSGLEVEL.

You can also control trace messages for the entire pipeline by using either the
TRACE NOMSGLEVEL option on the PIPE command or by using the MSGLEVEL
operand and the TRACE operand on RUNPIPE. See the z/VM: CMS Pipelines
Reference for more information about NOMSGLEVEL and MSGLEVEL.

Taking Snapshots of Data
As an alternative to tracing, consider taking snapshots of your data as it passes
through stages. Tracing lets you follow the data a record at a time, but snapshots
let you see all the data at once.

For example, suppose you want to see how the data changes after each stage in
this PIPE command:
/* Display list of SCRIPT files sorted in descending order */
'pipe',

'cms listfile * * a', /* Execute LISTFILE command */
'| locate 10.8 /SCRIPT/', /* Find those with SCRIPT file type */
'| sort descending', /* Sort them */
'| console'

Figure 291 shows how to take snapshots from an exec. Stages that write to files
are added to the pipeline.

pipe literal test | (trace nomsglevel 7) literal trace selectivity | console
FPLDSQ028I Starting stage with save area at X'03DA1388 03F6F6B0 00000000'
FPLDSQ001I ... Running "literal trace selectivity"
FPLDSP035I Output 20 bytes
FPLDSP039I ... Data: "trace selectivity"
trace selectivity
FPLDSQ031I Resuming stage; return code is 0
FPLDSP034I "SHORT" called
FPLDSQ031I Resuming stage; return code is 0
FPLDSP020I Stage returned with return code 0
test
Ready;

Figure 290. Using NOMSGLEVEL to Suppress Messages

/* Display list of SCRIPT files sorted in descending order */
'pipe',

'cms listfile * * a', /* Execute LISTFILE command */
'| > test1 snapshot a', /* ...take snapshot */
'| locate 10.8 /SCRIPT/', /* Find those with SCRIPT file type */
'| > test2 snapshot a', /* ...take snapshot */
'| sort descending', /* Sort them */
'| console'

Figure 291. Taking Snapshots

Debugging Pipelines

236 z/VM: CMS Pipelines User’s Guide

Naming Pipelines (NAME Option)
When writing execs that call other execs that issue PIPE commands, it can be
difficult to find a failing PIPE command. The error messages reveal the problem, but
you cannot figure out which pipeline issued the messages. In these situations, use
the NAME option on your PIPE commands.

NAME lets you give a pipeline a name. The name is displayed in any error
messages caused by the pipeline.

The following example shows how you might keep track of each time an exec is run
by writing a record in a log file. The TIME EXEC writes a record to a log file:
/* TIME EXEC -- print out the time to a log file each time an */
/* exec is run */
'PIPE (NAME TIME) CP Q TIME | >> TIME FILE E'

TIME EXEC is called by the MYEXEC EXEC:
/* MYEXEC EXEC */
/* This is an example of how one could keep track of each time an */
/* exec is run in a log file */

'TIME' /* Write time to the log file */
/***/
/* */
/* BODY OF THE EXEC. */
/* */
/***/

The only problem is that you do not have access to the disk where the log file is
located. This causes a CMS Pipelines error. Because the NAME option is used, the
error messages will include the name of the failing pipeline.

Displaying Pipeline Messages
CMS Pipelines issues messages when it detects errors. These messages are not
displayed if the CP EMSG setting is OFF. If you receive a nonzero return code from
your pipeline, but no messages, enter the CP SET EMSG ON command:
pipe < test file j | console
Ready(119);
set emsg on
Ready;
pipe < test file j | console
FPLDSR119E Mode J not available or read only
FPLSCA003I ... Issued from stage 1 of pipeline 1
FPLSCA001I ... Running "< test file j"
Ready(119);

In the above example, the TEST FILE was on file mode J, which was released
before the PIPE command was issued.

See the z/VM: CP Commands and Utilities Reference for more information about
the CP SET EMSG command.

Debugging Pipelines

Chapter 13. Debugging Pipelines 237

Displaying All Nonzero Return Codes (LISTERR Option)
The PIPE command returns the most severe return code from all its stages. (Any
negative return code is more severe than any positive return code.) If several
stages give a nonzero return code, you see only the most severe code. To see the
others, use the LISTERR option.

For example, the following PIPE command produces two errors:
pipe (listerr) cms listfile xxx scrpit a|append cms listile * exec a |console

Because the file XXX SCRPIT A does not exist, the CMS LISTFILE stage gives a
nonzero return code. (Naturally, if you have a file named XXX SCRPIT A, the return
code is zero.) The second nonzero return code is caused by a typing error in the
APPEND stage. Instead of listfile, the string listile was entered.

With the LISTERR option, messages are displayed for both stages with the return
codes. Without the LISTERR option, you see only one of the return codes. Try the
command both ways to see the differences.

Debugging Pipelines

238 z/VM: CMS Pipelines User’s Guide

Appendix A. Additional Examples

This appendix contains additional examples that show how stages can be combined
effectively.

Listing Frequently-Used Execs
POPEXECS (Figure 292) lists the ten execs in storage that are called most often.
The CMS EXECMAP command writes a list, with usage statistics, of execs in
storage. POPEXECS processes the response from the CMS EXECMAP command.

Here is an example:
popexecs
PROFILE XEDIT 185
PI REXX 99
XEDMAC XEDIT 89
ACC29A EXEC 22
XPNDDEST REXX 22
RDRXVDST XEDIT 21
EQSYN EXEC 11
PFXTEST EXEC 11
ALTER XEDIT 10
UNRAVEL XEDIT 10
Ready;

Listing Accessed File Modes
The example in Figure 293 lists accessed file modes. It displays the list as a string
of letters.

Here is an example:

/* POPEXECS EXEC -- Find 10 most popular execs loaded with EXECLOAD */
'PIPE',

'cms EXECMAP', /* Get list of everything */
'| drop 1', /* Remove title */
'| specs 1.29 1', /* Retain name and count */
'| sort 22-* descending', /* Sort */
'| take 10', /* Take the top ten */
'| console' /* Display them */

exit rc

Figure 292. Finding Frequently-Used Execs: POPEXECS EXEC

/* TYACC EXEC -- Get list of accessed file mode letters */
'PIPE',

'cms QUERY ACCESSED', /* List in-use file mode letters */
'| drop 1', /* Drop the title line */
'| specs 1.1 1', /* Keep only the mode letter */
'| join *', /* Put them together */
'| console' /* Display them */

exit rc

Figure 293. Listing Accessed File Modes: TYACC EXEC

© Copyright IBM Corp. 1991, 2009 239

query accessed
Mode Stat Files Vdev Label/Directory
A R/W 45 191 BAR191
B R/W 62 DIR SERVER8:KIM.PUBS
C R/O 1152 19C ESA19C
G R/O 4728 19F NUGOOD
S R/O 349 190 CMS11
Y/S R/O 378 19E 19ESP4
Z/Z R/O 823 19D ES1HLP
Ready;
tyacc
ABCGSYZ
Ready;

Counting Reader Files
The example in Figure 294 counts the number of reader files that are from local
users. Files from other systems are sent via RSCS. The origin user ID of such a
spool file is the virtual machine named in the fifth token of the response to the CMS
IDENTIFY command.

The NFIND stage contains an underscore to ensure that records from only the
network virtual machine are discarded. For instance, the NFIND stage discards RSCS
but keeps RSCS1.

Here is an example:
pipe cp query files | console
FILES: 15 RDR, NO PRT, NO PUN
Ready;
netrdrf
14
Ready;

Displaying Block Comments
DISPBLKC EXEC (Figure 295 on page 241) displays the first block comment in an
exec. Specify the exec to be processed as an argument to DISPBLKC.

DISPBLKC uses the FRLABEL and TOLABEL stages to select the lines required. It
drops the first line matched to avoid selecting a null range.

/* NETRDRF EXEC -- count local reader files */
address command
'IDENTIFY (LIFO'
parse pull rscs .
'PIPE',

'cp Q RDR * ALL', /* Issue the QUERY READER command */
'| drop 1', /* Discard the header record */
'| nfind' rscs'_'||, /* Discard records from the RSCS machine */
'| count lines', /* Count the remaining lines from local users */
'| console' /* Display the count */

exit rc

Figure 294. Counting Reader Files: NETRDRF EXEC

Additional Examples

240 z/VM: CMS Pipelines User’s Guide

Here is an example:
dispblkc dispblkc exec h
Ready;
pipe < blksamp exec | console
/* Demonstrate a block comment */

/***/
/* This is a block comment. */
/* */
/* It has three lines. */
/***/

exit RC
Ready;
dispblkc blksamp exec
This is the block comment.

It has three lines.
Ready;

Adding Sequence Numbers to a File
Figure 296 on page 242 shows an example exec that creates a SCRIPT file having
sequence numbers with leading zeros in columns 1 through 8. The first record
number is 10. The sequence numbers are incremented by 10.

Note that the SPECS RECNO option generates a 10-character field, but we want
only 8 of them. An explicit field length takes care of this. You could also generate a
10-byte sequence field and then discard the first two bytes in a subsequent stage.

/* DISPBLKC EXEC -- Get block comment from an exec */
address command
arg fn ft fm .
if ft='' then exit 9999
'PIPE',

'<' fn ft fm , /* Read the requested file */
'| frlabel /*******************'||, /* Copy from start of block */
'| drop 1', /* But drop the first comment */
'| tolabel /*******************'||, /* Stop at end of block */
'| change -/*--', /* Discard comment delimiters */
'| change -*/--',
'| console' /* Display the comment text */

exit rc

Figure 295. Displaying Block Comments: DISPBLKC EXEC

Additional Examples

Appendix A. Additional Examples 241

Because the RIGHT operand is used to position the record number (RECNO), the
number is padded on the left with blanks. Notice that column 8 is also a blank. The
XLATE stage changes the leading blanks and the blank in column 8 to zeros. This
yields leading zeros and an increment by 10.

Here is an example:
crtscr
Ready;
pipe < sample script|console
00000010:gdoc
00000020:body.
00000030 here is a line in the document
00000040:egdoc.
Ready;

Copying between XEDIT Files
The XEDIT COPY subcommand copies lines of any length within a file, but copying
lines from one file to another one is, in general, via disk. The IFCOPY XEDIT macro
in Figure 297 on page 243 copies from one file to another without using disk
storage. The format is:

IFCOPY number to-file

The first argument is the number of lines to copy from the current line in the current
file. The remaining argument is the name of the file to receive the copied records.
The lines are inserted after the current line.

Because the XEDIT stage cannot insert lines into a file, we use it to add the lines to
the end of the target file instead. Then we use an XEDIT subcommand to move the
added text from the end of the file to the appropriate location (that is, after the
current line). The XEDIT stage is also used to read the lines of the source file. It is
assumed that there are only two files and that the argument is the number of lines
to copy.

/* CRTSCR EXEC -- Create Script file with sequence numbers */

address command
'PIPE',

'literal :egdoc.'||, /* Some data lines */
'| literal here is a line in the document'||,
'| literal :body.'||,
'| literal :gdoc.'||,
'| specs',

'recno 1.7 right', /* Add sequence numbers */
'1-* 9', /* Load record into column 9 onward */

'| xlate 1.8 40 0', /* Make leading zeros */
'| > sample script a'

exit rc

Figure 296. Adding Sequence Numbers: CRTSCR EXEC

Additional Examples

242 z/VM: CMS Pipelines User’s Guide

Because of XEDIT size restrictions, your records are truncated if you copy to a file
that cannot accommodate the length of the lines inserted.

Reversing the Order of Records
The REVLINES REXX stage in Figure 298 on page 244 reverses the order of
records flowing through it. It accepts a number as an operand. The operand
indicates the number of records that are to be reversed. After reversing the
specified number of records, REVLINES REXX copies any remaining records in its
input stream to its output stream.

To reverse the records, REVLINES stores them in REXX variables and writes them
in reverse order (notice the DO instruction). If the requested number is greater than
the number of records in the input stream, REVLINES reverses all the available
records.

/* IFCOPY XEDIT -- Copy from one file to another without using disk */

parse arg numlines tofile

'extract /fname/ftype/fmode/line/size' /* Where are we? */
fromfile=fname.1 ftype.1 fmode.1 /* Remember it... */
fromline=line.1

'xedit' tofile /* Edit the "to" file */
'extract /fname/ftype/fmode/line' /* Remember it... */
tofile=fname.1 ftype.1 fmode.1
toline=line.1

'+* extract /line' /* Go to the end and learn where that is */
insert=size.1 /* Set INSERT to number of first line inserted */
'bottom'

address command,
'PIPE',

'xedit' fromfile, /* Get the "from" file */
'| take' numlines, /* Keep only the lines requested */
'| xedit' tofile /* Append to the "to" file */

':'insert 'move * :'toline /* Move lines where they belong */

Figure 297. Copying between XEDIT Files: IFCOPY XEDIT

Additional Examples

Appendix A. Additional Examples 243

Examples:
pipe literal def|literal abc|console
abc
def
Ready;
pipe literal def|literal abc|revlines 3|console
def
abc
Ready;
pipe literal ghi|literal def|literal abc|revlines 2|console
def
abc
ghi
Ready;

An alternative method of doing what the REVLINES REXX stage does is to use the
INSTORE stage with the REVERSE operand specified. Then the OUTSTORE stage
can read all the records back into the pipeline in reverse order.

Isolating Words
ISOWORD REXX (Figure 299) isolate words of text by writing each word in its input
records to a separate output record. It retains quotation marks within words (for
example, Fred's), but not quotation marks at the beginning or end (for example,
users').

/* REVLINES REXX -- Reverse the order of the first N lines */
parse arg number . /* Read number of lines to reverse */
if ¬datatype(number, 'Whole') then exit 999 /* Valid number? */

'callpipe',
'*:', /* Connect input stream */
'| take' number, /* Take number of records requested*/
'| stem in.' /* Put them in a stemmed array */

do i=in.0 by -1 to 1 /* Write them in reverse order */
'output' in.i

end

'short' /* Copy the rest */
exit rc

Figure 298. Reversing the Order of Records: REVLINES REXX

/* ISOWORD REXX -- Isolate words. */
'callpipe',

'*:', /* Connect input stream */
"| xlate 40-7f 40 ' ' 0-9 40", /* No punctuation and numbers */
'| split', /* Isolate words */
'| specs 1-* next / / next', /* Pad a blank on end */
"| change 1 /'//", /* Remove leading quotation mark */
"| change /' //", /* ...and trailing one */
'| strip', /* Just words, no blanks */
'| *:' /* Write to output stream */

exit rc

Figure 299. Isolating Words: ISOWORD REXX

Additional Examples

244 z/VM: CMS Pipelines User’s Guide

The XLATE stage removes all other punctuation and numbers, but leaves single
quotation marks. The record is then split into words. The SPECS stage puts a blank
at the end of each word so that a following CHANGE stage can remove trailing
quotation marks. After leading and trailing quotation marks are removed, STRIP
removes any leading or trailing blanks. Note that case is respected in the output
records. Use XLATE LOWER if you want all output records in lowercase.

Listing Files on Accessed File Modes
LFD REXX (Figure 300) writes information about all files on one or more accessed
minidisks or accessed SFS directories. Specify a string of file mode letters as the
operand. Specify an asterisk to list files on all accessed file modes.

Like many built-in device drivers, the LFD REXX example also processes records in
its input stream. It expects these records to contain a string of one or more file
mode letters (just like the operand). LFD processes the records in the input stream
after processing the operand. The operand is optional if file mode letters are
supplied in the input stream.

To process each file mode, LFD REXX uses COMMAND LISTFILE. When an
asterisk is specified, LFD uses another user-written stage named ACCESSED to
get a list of accessed file mode letters. ACCESSED REXX is shown in Figure 301
on page 246.

The user-written stage ACCESSED REXX (Figure 301 on page 246) finds the mode
letters of all accessed disks and directories.

/* LFD REXX -- List files on a minidisk or number of disks */
signal on error
parse arg in
if in='' then 'readto in' /* No operand? Read from input stream */
else rc=0
do while rc=0

do while in¬=''
in=translate(strip(in)) /* Make uppercase and remove blanks */
if left(in,1)='*' /* If character is asterisk, put actual */

then in=accessed() || substr(in,2) /* letters in string */
parse var in mode +1 in
'callpipe command LISTFILE * *' mode '(NOH LABEL | *:'

end
'readto in'

end
error: exit rc*(rc¬=12)

accessed: /* Return all accessed disks */
address command 'PIPE',

'accessed', /* Use user-written stage */
'| stem modes.' /* Get value */

return modes.1

Figure 300. Listing Files on Accessed File Modes: LFD REXX

Additional Examples

Appendix A. Additional Examples 245

Examples:
query disk a
LABEL CUU M STAT CYL TYPE BLKSIZE FILES BLKS USED-(%) BLKS LEFT BLK TOTAL
SECURE 100 A R/W 10 3380 4096 10 57-04 1443 1500
Ready;
pipe lfd a | count lines | console
10
Ready;

Ignoring Case on FIND
All built-in stages that compare strings (such as LOCATE and FIND) are
case-sensitive. The FINDU REXX example (Figure 302) does the same function as
the FIND stage, but it ignores case.

FINDU REXX first ensures that input records are at least as long as the search
string. Records that aren’t as long as the search string cannot possibly match, so
they are discarded.

If a record is long enough, it is prefixed with an uppercase version of itself. This
uppercase version is as long as the search string. Then FIND is used to compare
an uppercase version of the search string with the uppercase prefixes. Records that
do not match are discarded. Matching records flow to a SPECS stage that removes
the uppercase prefix, thus restoring the original record.

Here is an example:

/* ACCESSED REXX -- List accessed file modes */
arg disktype
'callpipe',

'command QUERY DISK' disktype, /* Ask CMS */
'| drop 1', /* Drop the heading */
'| specs word3 1', /* File mode is the third word */
'| chop 1', /* Just the letter */
'| join *', /* Combine all */
'| *:' /* Write to output stream */

exit rc

Figure 301. Listing Accessed File Modes: ACCESSED REXX

/* FINDU REXX -- Case-ignoring find */
parse upper arg a
arglen=length(a)
'callpipe',

'*:', /* Connect input stream */
'| locate' arglen, /* Ensure long enough */
'| specs 1.'arglen '1', /* Put key at beginning of record */

'1-* next', /* Put original record after key */
'| xlate 1.'arglen 'upper', /* Translate only the key */
'| find' a||, /* Look for it */
'| specs' arglen+1'-* 1', /* Remove key */
'| *:'

exit rc

Figure 302. Ignoring Case on FIND: FINDU REXX

Additional Examples

246 z/VM: CMS Pipelines User’s Guide

pipe literal a | literal A | literal b | findu a | console
A
a
Ready;

Writing the First Lines of Files
If your files have meaningful comments on their first lines, you may wish to have an
index of first lines. LINE1 REXX (Figure 303) is an example that produces such an
index.

LINE1 REXX does not have an operand. Instead, it expects a list of files in its input
stream. The list can be in CMS EXEC format (that is, the format created by the
CMS LISTFILE command when the EXEC option is specified).

For each file listed in the input stream, LIST1 REXX writes an output record
containing the name of the file and the first line from it. LIST1 eliminates comment
delimiters from the lines.

Here is an example:
listfile * exec b (exec
Ready;
pipe < cms exec | take 5 | line1 | console
ACCSRCE EXEC B1: Access a source disk
ACC19B EXEC B1: Links and accesses

/* LINE1 REXX -- Process a list of files for first lines */
signal on error

/* We use ADDPIPE it preprocess the input records */
'addpipe (name LINE1)',

'*.input:', /* Connect input stream */
'| nfind *', /* Discard comments */
'| specs w3 - * 1', /* Remove EXEC prefix */
'| strip', /* Strip leading and trailing blanks */
'| find ', /* Keep non-null lines */
'| *.input:'

do forever
'readto in' /* Read record containing file ID */
parse var in fn ft fm . /* Parse it */
if find('MODULE',ft)>0 then firstline='' /* Use null for MODULE */
else /* Otherwise get the first line... */

'callpipe',
'<' fn ft fm, /* Read the file */
'| take 1', /* Take only the first line */
'| change ?/*??', /* Get rid of comment delimiters */
'| change ?*/??',
'| change 1 ?*??',
'| change 1.2 ?.*??',
'| var firstline' /* Put line in variable FIRSTLINE */

/* Now write the output record */
'output' left(fn,8) left(ft,8) left(fm,2)':' firstline

end

error: exit rc*(rc¬=12)

Figure 303. Writing the First Line of Files: LINE1 REXX

Additional Examples

Appendix A. Additional Examples 247

ACC29A EXEC B1: Ensures that the log file disk is accessed
AC4250 EXEC B1: Access for 4250 and dcf3
ADDENDA EXEC B1: Process an addenda file
Ready;

Creating a Word List from XEDIT
The example in Figure 304 shows how to create a list of the words in a file with
usage counts.

WORDLIST processes the contents of the current file and stores the result in
another file in the ring. When WORDLIST completes its processing, you see the
word list.

Executing a Filter against XEDIT Lines
The XSTG XEDIT macro (Figure 305 on page 250) lets you execute filters against
the lines of a file you’re editing. It reads a specified number of lines from the file,
executes stages on those lines, and replaces the original lines with the changed
lines.

XSTG takes two operands: a number followed by the stages you want to run. The
number indicates how many lines should be processed by the stages you specify.
The XSTG macro starts processing with the current line. In the following example,
cranberry is the current line. The XSTG command indicates that 3 lines will be
processed by the LOCATE and XLATE stages.

/* WORDLIST XEDIT -- Count of word usage in the file being edited */

'extract /fname/ftype/fmode' /* Find out the file ID */
'locate :0' /* Go to the top of the file */
'xedit = wordlist s' /* Edit a file that does not exist */
'preserve' /* Save the editing environment */
'set msgmode off' /* Don't tell us about null file */
'locate -*' /* Go to the top */
'delete *' /* Delete any lines */
'restore' /* Restore message setting */
'set recfm v' /* Don't want trouble with length */
address command,

'PIPE',
'xedit' fname.1 ftype.1 fmode.1, /* Get file */
"| xlate lower 00-7f 40", /* lowercase and discard */

" ' ' ", /* retain single quotation mark */
'| split', /* single words */
"| xlate 1 ' 40", /* not leading quotation marks */
'| strip', /* and no lone ones */
'| sort count', /* sort and count occurrences */
'| specs 7-10 1 11-* 6', /* format records */
'| xedit' /* write to last edited file */

r=rc
'locate :0' /* Go to the top of the file */
'set alt 0 0' /* Reset alteration count */
exit r

Figure 304. WORDLIST XEDIT

Additional Examples

248 z/VM: CMS Pipelines User’s Guide

FRUITS SCRIPT A1 V 255 Trunc=255 Size=5 Line=3 Col=1 Alt=0

===== * * * Top of File * * *
===== apple
===== banana
===== cranberry

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...
===== date
===== elderberry
===== * * * End of File * * *

====> xstg 3 locate /berry/ | xlate upper
X E D I T 1 File

The resultant display follows. The line date is removed by the LOCATE stage.
XLATE translates the selected lines (cranberry and elderberry) to uppercase.

FRUITS SCRIPT A1 V 255 Trunc=255 Size=4 Line=3 Col=1 Alt=3

===== * * * Top of File * * *
===== apple
===== banana
===== CRANBERRY

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...
===== ELDERBERRY
===== * * * End of File * * *

====>
X E D I T 1 File

XSTG XEDIT is shown in Figure 305 on page 250.

Additional Examples

Appendix A. Additional Examples 249

XSTG XEDIT works only with files that have records up to 254 bytes in length;
XEDIT truncates longer input lines without issuing an error message.

The settings that could change the appearance of a line are disabled because
processed lines are put back in the file with the INPUT XEDIT subcommand.

The first few stages get the desired number of records from XEDIT and perform the
operation. INPUT commands are generated to insert the output lines in the file. A
command to back up one line is also generated.

All these commands are buffered in BUFFER. This is important because the
reading should finish before lines are added. If not, there might be a loop where the
same line is processed over and over again.

Finally the macro deletes the lines that were read from the file, leaving just the
newly inserted ones.

There are several approaches to overcome the problems arising from inserting the
changed lines with SUBCOM XEDIT instead of using the XEDIT device driver.

You can run two PIPE commands: One to send the lines to a stemmed array or to a
utility file you have added to the XEDIT ring (or to a disk file); another to copy these
records into the file where they should go, after you have deleted or added
sufficient lines to accommodate the lines added or deleted by the filters.

/* XSTG XEDIT -- run one or more stages on lines of the file */

parse arg number stage
if verify(number, '0123456789')>0 then do /* Valid argument? */

'emsg' number 'not a number'
exit 28

end
'extract /line/size' /* Get position and size */
if line.1=0 then '+1 extract /line' /* Move down 1 if at top of file */
todo=min(number, size.1-line.1+1) /* Make sure we don't go past end */
'preserve' /* Save user's XEDIT settings */
'set escape off' /* Set up XEDIT the way we need it */
'set linend off'
'set image off'
'set case mixed'
'set tabs 1'
'set trunc *'
address command 'PIPE',

'xedit', /* Read from file */
'| take' todo, /* Take the requested number */
'|' stage, /* Add the user's stages */
'| spec /input/ 1', /* Put INPUT command in column 1 */

'1-* nextword', /* Tack on the filtered record */
'| literal up', /* Back up one line */
'| buffer', /* Wait for all done */
'| subcom xedit' /* Put the lines back */

r=rc
'restore' /* Restore user's XEDIT settings */
if r=0 then ':'line.1 'delete' todo /* Get rid of original lines */
exit r

Figure 305. XSTG XEDIT

Additional Examples

250 z/VM: CMS Pipelines User’s Guide

Another approach is to use the XEDIT stage to add the lines at the end of the file.
After the pipeline finishes, move them to where they belong with an XEDIT
subcommand.

Counting Files
Figure 306 shows an example exec named NUMTYPE that uses SORT COUNT.
NUMTYPE lists the unique file types on file mode A. Preceding each file type is a
count of the number of files having that file type. The list of counts and file types is
displayed in descending order by count. If several file types have the same count,
they are displayed in alphabetic order within that count.

A CMS LISTFILE command is processed to put a list of files in the pipeline. SPECS
writes records containing only the file type. Then SORT COUNT orders the records,
discards duplicates, and counts the number of duplicates of each record. The count
is in columns 1 through 10, with the original record immediately following. If there
were 140 SCRIPT files, for example, the record would have this format:

140SCRIPT

The second SORT stage uses two sort ranges. The first range is the count
(columns 1 through 10). The second range is the file type (columns 11 to the end of
the record). The first range is sorted in descending order (so the file type having the
greatest number of files is first). The second range is sorted in ascending order (so
that file types having the same count are in alphabetic order).

After the sort, SPECS is used to space the records. LITERAL puts a header ahead
of all incoming pipeline data. Finally, CONSOLE displays the results. Here is an
example run:
numtype

Number File Type
140 SCRIPT
105 EXEC
91 XEDIT
34 C
28 CIUOLIB
25 OFSLOGfl
16 MODULE
15 PACKAGE
14 $PMLIBS$
12 REXX
10 OFSMLIST
10 SXEDIT
9 LIST3820
9 NOTE

/* NUMTYPE EXEC -- List the number of files having each file type */
'pipe',

'cms listfile * * a', /* Process LISTFILE command */
'| specs word2 1', /* Keep only the file type */
'| sort count', /* Sort and count them */
'| sort 1-10 desc 11-18 ascending', /* Reorder the records */
'| specs 1-10 1 11-* 15', /* Space them out */
'| literal Number File Type', /* Add a heading line */
'| console' /* Display it */

exit rc

Figure 306. Example Exec for SORT COUNT: NUMTYPE EXEC

Additional Examples

Appendix A. Additional Examples 251

9 NOTEBOOK
. .
. .
. .

If you have many files, it might be best to direct the output of NUMTYPE to a file
(using another pipeline, of course):
pipe cms numtype | > numtype output a
Ready;

Trapping the Responses to RSCS Commands
The following stage issues an RSCS command and writes the response from RSCS
to the primary output stream. Messages from other sources are written to the
secondary output stream if it is defined.

Processing Reader Files
The READER stage takes the reader file CP gives to it. The RDR REXX stage in
Figure 308 on page 253 looks for a specific file and ensures it can be read (correct
type, not in hold, and reader spooled to the same class as the file). The argument
to RDR is the spool file ID. The file will remain in the reader after it is read.

/* QRSCS REXX -- Query RSCS, waiting for a response */
address command 'CP SET MSG IUCV' /* Tell CP to route messages via IUCV */
address command 'IDENTIFY (LIFO' /* Identify tells us RSCS user ID */
parse pull net . /* Extract the RSCS user ID */

'maxstream output' /* How many streams connected? */
if rc=0 then sec='' /* No secondary, discard other stuff */
else sec='?rscs: | *.output.1' /* Arrange to write to secondary */

'callpipe (endchar ? name QRSCS)',
'literal +5', /* Five seconds max */
'| delay', /* Wait */
'| specs /PIPMOD STOP/ 1', /* Build command to stop PIPE */
'| command', /* Hold here */
'?',
'starmsg CP SMSG' net arg(1), /* Get messages from everywhere */
'| rscs: find 00000001'left(net,8,'_'), /* Just messages from net */
'| specs 17-* 1', /* Remove prefix */
'| *: ', /* Write to primary output */
sec /* Write to secondary if it exists */

exit rc

Figure 307. Example Stage to Trap RSCS Responses: QRSCS REXX

Additional Examples

252 z/VM: CMS Pipelines User’s Guide

To test RDR we generated a spool file by entering:
spool pun *
Ready;
pipe < vmletter script | punch
Ready;
close punch
PUN FILE 0002 SENT FROM YOURID PUN WAS 0002 RECS 0204 CPY 001 A NOHOLD NOKEEP
Ready;

The first character of the line is the X'41' channel command code character. This
file is read in the first sample in Figure 309 on page 254 (the file has one line); the
second sample shows the response when there is no reader file with the spool ID
specified.

/* RDR REXX -- Ready a reader file for processing */

parse arg sfid .
if sfid=''

then call err 28, 'No spool file ID specified.'

address command 'CP CLOSE RDR' /* Ensure reader is closed */

address command 'PIPE',
'cp QUERY RDR' sfid,
'| drop 1',
'| var file'

if RC¬=0
then call err RC, 'Unable to locate spool file' sfid

parse var file . . class type . . hold .

if find('PUN PRT RDR',type)=0
then call err 90, 'Unsupported spool file type' type

if hold¬='NONE' /* Not in hold status? */
then

if hold='USER' /* In user hold? */
then call diag 8, 'CHANGE RDR' sfid 'NOHOLD'
else call err 100, 'Unsupported hold status' hold

address command 'CP SPOOL RDR CLASS' class 'NOCONT'
call diag 8, 'ORDER RDR' sfid

'callpipe',
'reader hold', /* Read the reader but keep the file */
'| nfind' '03'x||, /* Discard no-ops */
'| *:'

r=RC
address command 'CP CLOSE RDR' /* Close the reader */

exit r

err: procedure
parse arg retc, msgtext
parse source . . fn ft .
'message' space(fn ft)':' msgtext

exit retc

Figure 308. Example Using Reader Files: RDR REXX

Additional Examples

Appendix A. Additional Examples 253

See Chapter 8, “Using Unit Record Devices,” on page 173 for more information
about using CMS Pipelines with spool files.

Marking Selected Lines
Figure 310 shows MARKLINE REXX. MARKLINE scans its input records for a
specified string. Records containing the string are prefixed with a pointer. Records
not containing the target get a blank prefix. MARKLINE writes the prefixed records
to its output stream.

Example run:
pipe < fruits script | console
apple
banana
cranberry
date
elderberry
Ready;
pipe < fruits script | markline /berry/ | console

apple
banana

---> cranberry
date

---> elderberry
Ready;

pipe rdr 0002 | console
DSMBEG323I STARTING SECOND PASS.
Ready;
pipe rdr 1 | console
RDR REXX: Unable to locate SPOOL file 1
Ready;

Figure 309. Running RDR REXX

/* MARKLINE REXX -- Mark lines with a locate target. */
parse arg target
if target='' then target='/ /'

'callpipe (endchar ?)',
'*:', /* Connect to input stream */
'| l: locate' target, /* Look for target */
'| specs /---> / 1', /* Put mark at beginning of output record */

'1-* next', /* Put all of input record after the mark */
'| f: faninany', /* Join with other lines */
'| *:', /* Send to output */
'?',
'l:', /* Lines without the target flow here */
'| specs / / 1', /* Put blanks at the beginning of output */

'1-* next', /* Put all of input record after the blanks */
'| f:' /* Send to FANINANY to be merged with others */

exit rc

Figure 310. Marking Selected Lines: MARKLINE REXX

Additional Examples

254 z/VM: CMS Pipelines User’s Guide

Creating Two-Column Output
The stage in Figure 311 displays lines 1 through n and lines n+1 through 2n in a
two-column format on your terminal:

Line 1 Line n+1
Line 2 Line n+2
....
Line n Line 2n

The first operand is the number of lines per page; the second one is the indentation
of the second column. The remaining operands are written as a header before each
set of records.

Example run:
pipe < fruits script | console
apple
banana
cranberry
date
elderberry
Ready;
pipe < fruits script | two-up 3 35 Fruits: | console
Fruits:
apple date
banana elderberry
cranberry
Ready;

Note: Another stage that can be used to accomplish this example is the SNAKE
stage.

/* TWO-UP REXX -- display records in two columns */
parse arg pl indent title
'peekto'
do while rc=0

if title ¬='' then 'output' title /* Write title if there is one */
'callpipe (listerr endchar ?)',

'*:', /* Connect to input */
'| t: take' pl, /* Take the first column */
'| buffer', /* Buffer it */
'| s: specs 1-* 1', /* Put primary input in first column */

'select 1', /* Switch to secondary input */
'1-*' indent, /* Put it in second column */

'| *:', /* Send it to output */
'?',
't:',
'| take' pl, /* Take the second column */
'| s:' /* Send it to SPECS for merge */

if rc¬=0 then exit rc
'peekto' /* Done? */

end

exit rc*(rc¬=12)

Figure 311. Creating Two-Column Output: TWO-UP REXX

Additional Examples

Appendix A. Additional Examples 255

Putting First Last and Last First
The example in Figure 312 writes the first record of the input stream after it has
written all the other records to the output stream:

The example in Figure 313 puts the last record of the input stream first in the output
stream file.

In the first example you need to buffer the first record of the file; in the second
example you must buffer all except the last record of the file. Example runs of
FIRLAST and LASTFIR follow:
pipe < fruits script | firlast | console
banana
cranberry
date
elderberry
apple
Ready;
pipe < fruits script | lastfir | console
elderberry
apple
banana
cranberry
date
Ready;

/* FIRLAST REXX -- Write the first input record last */
'callpipe (end ?)',

'*:',
'| d: drop 1', /* Write first record to secondary output stream */
'| f: fanin', /* Read primary input, then secondary */
'| *:',
'?',
'd:',
'| buffer', /* Hold the first record until all are read */
'| f:'

exit rc

Figure 312. Writing the First Record Last: FIRLAST REXX

/* LASTFIR REXX -- Write the last input record first */
'callpipe (end ?)',

'*:',
'| d: take last', /* Write all but last record to secondary output */
'| f: fanin', /* Combine streams */
'| *:',
'?',
'd:',
'| buffer', /* Hold records until the last is read */
'| f:'

exit rc

Figure 313. Writing the Last Record First: LASTFIR REXX

Additional Examples

256 z/VM: CMS Pipelines User’s Guide

Tagging and Spooling
The example in Figure 314, TAGNSPL REXX, directs the punch to a destination
(node ID and user ID) coded as the argument. Then it sends the pipeline records to
the device.

Create a Print File from a Reader File
Assuming the first reader file is a PRT file, the following PIPE command creates a
copy of the file on the virtual printer without an intermediary disk file:
pipe reader | drop 1 | printmc

Figure 315 shows a better solution. It builds and executes a CP TAG command.
The tag information is usually on the first record of a print file.

Punching Files
The PUNFILES EXEC (Figure 316 on page 258) punches files in the format used
by the CMS PUNCH command. The operand is a file name pattern. PUNFILES
uses the pattern on a LISTFILE command to determine which files to punch. All the
files are punched as a single spool file.

/* TAGNSPL REXX -- Tag and spool the punch, then punch the file */
arg node user .

address command /* Issue several CP and CMS commands */
'IDENTIFY (LIFO' /* Where am I? */
parse pull . . mynode . rscs .
if node=mynode /* Local or remote */

then spoolto=user
else spoolto=rscs

'CP SPOOL D PURGE' spoolto 'NOHOLD CLASS A' /* Spool the punch */
'CP TAG DEV D' node user /* Tag the punch */

address /* Revert to pipeline environment */
'callpipe *: | punch' /* Write the records */
exit rc

Figure 314. Tagging and Spooling the Punch: TAGNSPL REXX

/* REPRINT EXEC -- Create a print file from a reader file */
address command
'PIPE (listerr endchar ?)',

'reader', /* Read from the card reader */
'| a: drop 1', /* Drop tag -- send it on secondary stream */
'| printmc e', /* Print the rest of the file */
'?',
'a:', /* Connect to secondary output of DROP */
'| specs /TAG DEV 00E / 1', /* Build a tag command... */

'2-* next', /* ...and add tag from DROP to it */
'| cp' /* Have CP run the command */

r=rc
'CP CLOSE 00C'
'CP CLOSE 00E'
exit r

Figure 315. Creating a Print File from a Reader File: REPRINT EXEC

Additional Examples

Appendix A. Additional Examples 257

On the LISTFILE command, the options LABEL and NOH are used to get the
information necessary to build the :READ record.

The PUNFILES EXEC uses the CMS LISTFILE command to find the files to punch.
It uses PUNFILES REXX to get a file with the proper header.

PUNFILES REXX (Figure 317) gets the file and puts the proper header on it.

/* PUNFILES EXEC -- Pipeline punch */
parse arg fn ft fm .

address command

'PIPE',
'cms LISTFILE' fn ft fm '(LABEL NOH',
'| stem fileinfo.'

if rc¬=0 then do
r=rc
'PIPE',

'stem fileinfo.',
'| emsg'

exit r
end

'PIPE',
'stem fileinfo.',
'| punfiles',
'| punch'

r=rc
if r=0 then 'CP CLOSE D NAME MANY FILES'
else 'CP SPOOL D PURGE'
exit r

Figure 316. Punching Files: PUNFILES EXEC

/* PUNFILES REXX -- Build header and read file into pipeline */
signal on error
do forever

'readto fileinfo'
parse var fileinfo file+20 57 date time label .
hdr=':READ ' file left(label,6) right(date,8,0) right(time,8,0)
'callpipe',

'var hdr', /* Get header */
'| append <' file, /* then the file */
'| *:' /* To output */

end
error: exit rc*(rc¬=12)

Figure 317. Building Punch File Headers: PUNFILES REXX

Additional Examples

258 z/VM: CMS Pipelines User’s Guide

Appendix B. CMS Pipelines Summary
Table 3. What Each Stage Does

Stage Task Performed

Assembler Files

ASMCONT Joins multiline assembler statements.

ASMFIND Selects assembler statements that begin with a specified text.

ASMNFIND Selects assembler statements that do not begin with a specified text.

ASMXPND Splits assembler statements.

STRASMFIND Selects assembler statements that begin with a specified string of characters.

STRASMNFIND Selects assembler statements that do not begin with a specified string of characters.

Blocking and Deblocking

BLOCK Blocks records.

DEBLOCK Converts blocked records back into their original format or creates logical records from an
external data format.

FBLOCK Reformats the primary input stream records to blocks of a specified size.

IEBCOPY Processes an MVS unloaded data set.

PACK Compacts data.

UNPACK Converts primary input stream records compressed by PACK back to their original format.

Changing Records

3270BFRA Converts a 2-byte unsigned integer to the 12-bit buffer address required for some 3270
devices, or vice versa.

APLDECODE Translates characters in the same way that the CMS command SET TEXT ON or SET APL
ON translates characters read from a 3270 display capable of displaying APL/TEXT
characters.

APLENCODE Translates characters in the same way that the CMS command SET TEXT ON or SET APL
ON translates characters written to a 3270 display capable of displaying APL/TEXT
characters.

ASATOMC Converts ASA carriage control to machine carriage control.

BUILDSCR Converts print files with machine carraige control characters, such as those produced by
OVERSTR or XPNDHI, to records containing 3270 character attributes.

CHANGE Replaces a string of characters with another string of characters.

CHOP Selectively truncates records.

COMBINE Combines several records into one record according to a specified logical operator.

C14TO38 Replaces a set of overstruck characters with a single character.

DATECONVERT Performs date format conversion and date validation.

JOIN Concatenates groups of records.

JOINCONT Joins records marked with a continuation string.

MCTOASA Converts machine carriage control to ASA carriage control.

OPTCDJ Generates a Table Reference Character (TRC) byte.

OVERSTR Processes overstruck lines.

PAD Extends records with one or more occurrences of a specified character.

REVERSE Reverses the contents of records on a character-by-character basis.

SNAKE Builds a multicolumn page layout.

© Copyright IBM Corp. 1991, 2009 259

Table 3. What Each Stage Does (continued)

Stage Task Performed

SPECS Rearranges the contents of records.

SPILL Splits lines longer than a specified number into multiple output lines.

SPLIT Splits records into multiple records.

STRIP Removes leading or trailing characters from records.

TOKENIZE Parses records according to a specified token.

UNTAB Expands tab characters (X'05') to blanks for lining up data into columns.

VCHAR Recodes characters to a different length.

XLATE Translates characters based on a specified translation table.

XPNDHI Highlights spaces between words.

Device Drivers

3270ENC Prepares a 64-character translate table used to convert binary values in the range B'000000'
through B'111111' (64 values) to displayable 1-byte graphic characters for placement in a
3270 data stream.

APPEND Writes primary input stream records to the primary output stream followed by records from a
specified stage or subroutine pipeline.

BFS Reads from an existing byte stream file when BFS is first in a pipeline, otherwise writes its
input records to (appends to or creates) a BFS file.

BFSDIRECTORY Reads from an existing BFS directory file and writes one record to the primary output stream
for each directory entry.

BFSQUERY Obtains information from OpenExtensions™ about the current working BFS directory, or the
contents of the symbolic links, or the current operating system.

BFSREPLACE Reads records from its primary input stream and writes those records to its connected
primary output stream, replacing the contents of the specified byte stream file.

BFSSTATE Writes records containing status information about byte stream files to its primary output
stream.

BFSXECUTE Reads a record containing a request from its primary input stream, and sends that request to
OpenExtensions services. The record containing the request is written to the primary output
stream, if it is connected.

CMS Issues CMS commands with full command resolution.

COMMAND Issues CMS commands as if they were invoked using ADDRESS COMMAND from
REXX/VM.

CONSOLE Reads from or writes to the terminal in line mode.

CP Issues CP commands.

EMSG Displays each record as an error message.

FULLSCREEN Writes 3270 data streams to the virtual console in fullscreen mode or to a 3270 device.

FULLSCRQ Queries 3270 device characteristics.

FULLSCRS Formats output from FULLSCRQ.

ISPF Accesses ISPF tables.

LISTPDS Reads the directory of a CMS simulated partitioned data set, such as a macro library,
discards the header record, and writes one record for each member of the library.

LITERAL Writes the specified data to the primary output stream and then copies primary input stream
records to the primary output stream.

MEMBERS Extracts members from a MACLIB, TXTLIB, or a file with a similar format.

PDSDIRECT Writes directory information from a CMS simulated partitioned data set.

CMS Pipelines Summary

260 z/VM: CMS Pipelines User’s Guide

Table 3. What Each Stage Does (continued)

Stage Task Performed

PREFACE Writes records from a specified stage or subroutine pipeline to the primary output stream
followed by primary input stream records.

PRINTMC Writes records to a virtual printer.

PUNCH Writes records to a virtual punch.

READER Reads data from a virtual card reader.

SQL Issues SQL statements.

SQLCODES Writes return codes received from DB2 Server for VM.

STORAGE Reads from or writes to virtual machine storage.

STRLITERAL Writes the specified data to the primary output stream and then copies primary input stream
records to the primary output stream.

SUBCOM Passes specified commands to a specified subcommand environment.

TAPE Reads from or writes to a tape at its current position.

URO Writes records to a virtual printer or virtual punch.

VMC Sends messages over the Virtual Machine Communications Facility (VMCF) to a service
machine.

XAB Reads or writes an external attribute buffer from a virtual printer or file.

XRANGE Creates one record containing a specified range of characters.

Event-Driven

DELAY Waits until a particular time of day or until a specified interval of time has passed to copy the
record.

IMMCMD Writes argument strings entered on specified immediate commands.

PIPESTOP Terminates stages waiting for an external event.

STARMONITOR Writes monitor records from the CP *MONITOR system service.

STARMSG Writes lines from a CP message service.

STARSYS Writes lines from and sends replies to a CP system service.

Execs

REXX Invokes a REXX program as a stage.

REXXVARS Gives information about REXX variables.

SCM Lines up comments and completes unclosed comments in REXX and C programs.

STACK Reads from or writes to the program stack.

STEM Gets or sets REXX or EXEC 2 variables with the specified stem.

VAR Gets or sets a REXX or an EXEC 2 variable.

VARLOAD Sets a REXX or an EXEC 2 variable.

File Input/Output

< Reads the contents of a CMS file.

> Creates or replaces a CMS file.

>> Creates or appends to a CMS file.

AFTFST Provides information about open files.

FILEBACK Reads the contents of a CMS file backward.

FILEFAST Reads the contents of a CMS file or creates or appends to a CMS file.

FILERAND Reads specific records or ranges of records from a CMS file.

CMS Pipelines Summary

Appendix B. CMS Pipelines Summary 261

Table 3. What Each Stage Does (continued)

Stage Task Performed

FILESLOW Reads the contents of a CMS file or creates or appends to a CMS file beginning at a
specified record number within the file.

FILEUPDATE Replaces records in a CMS file.

FMTFST Formats a file status table (FST) entry.

GETFILES Reads a list of CMS files.

MDISKBLK Reads blocks of data from an accessed CMS minidisk.

STATE Determines whether the specified file or files exist.

STATEW Determines whether the specified writable file or files exist.

Miscellaneous

? Displays a message that describes how to obtain CMS HELP information for CMS Pipelines.

AHELP Provides the author’s help information on CMS Pipelines messages, stages, pipeline
subcommands, related host commands, syntax variables, tutorials, and miscellaneous topics.

BUFFER Accumulates all records in a single stage not passing any on until all have been received.

CASEI Selects records relative to a target character string regardless of the case representation of
the character string.

CONFIGURE Tailors CMS Pipelines in your own z/VM logon session using pipeline configuration variables.

COPY Delays by one record the passing of records from the input stream to the output stream to
prevent a pipeline stall.

COUNT Counts bytes, blank-delimited character strings, or records.

CRC Computes a checksum on its input stream records using a CRC algorithm.

DUPLICATE Writes each input record in addition to the specified number of copies of each input record.

ELASTIC Puts a sufficient number of input records into a buffer to prevent a pipeline stall.

ESCAPE Inserts escape characters in records.

GATE Causes portions of a pipeline to end.

HELP Displays help information on CMS Pipelines messages, stages, and pipeline subcommands.

INSTORE Reads records from its input stream into storage and writes a single record containing only
the pointers to the records in storage.

LDRTBLS Runs a compiled user-written stage that has been loaded with the CMS LOAD command.

MACLIB Generates a macro library from COPY file members.

NUCEXT Resolves an entry point from a nucleus extension to find a compiled user-written stage to run.

OUTSTORE Unloads a file loaded into storage by INSTORE.

PAUSE Sends a signal from the pipeline containing the PAUSE stage to the pipeline containing the
RUNPIPE stage to receive a type X'11' PAUSE event record.

PIPCMD Issues primary input stream records as pipeline subcommands.

PREDSELECT Copies a record from its primary input stream to either its primary or secondary output stream
depending on the order of arrival of input records on its other input streams.

QSAM Gets records from or puts records to a physical sequential data set using queued sequential
processing.

QUERY Displays one of the following: the version of CMS Pipelines, the message level, the list of
messages that have been issued, or the level of CMS Pipelines.

RUNPIPE Issues input stream records as pipelines.

SORT Arranges records in ascending or descending order.

TIMESTAMP Determines when a record was read.

CMS Pipelines Summary

262 z/VM: CMS Pipelines User’s Guide

Table 3. What Each Stage Does (continued)

Stage Task Performed

UDP Allows access to a TCP/IP port.

ZONE Defines locations of the input data in records from which records are selected when using a
specified stage.

Multiple Streams

COLLATE Matches records from two input streams and writes matched and unmatched records to
different output streams.

DEAL Writes a primary input stream record to one of its connected output streams in either
sequential order starting with the primary output stream, or some other order specified on the
secondary input stream.

FANIN Combines multiple input streams into a single stream in a specified order.

FANINANY Combines multiple input streams into a single stream. FANINANY reads an input record from
any input stream that has a record available.

FANOUT Copies primary input stream records to multiple output streams.

GATHER Reads records from its connected input streams in either sequential or some other specified
order, and writes them to its primary output stream.

JUXTAPOSE Prefaces records in the secondary input stream with records from the primary input stream.

LOOKUP Finds records in a reference.

MERGE Combines records from all input streams in ascending or descending order.

NOT Reverses the primary and secondary output streams of a specified stage.

OVERLAY Reads a record from each input stream and merges the records read into a single record.

SYNCHRONIZE Reads records from each of its input streams while each stream has a record available.

UPDATE Modifies the primary input stream based on the contents of the secondary input stream.

Selecting Records

ALL Selects records containing a specified string or specified strings defined by an expression
comprising of character strings and logical operators.

BETWEEN Selects records between two specified targets including the records containing the target. The
specified targets must begin in the first column of a record.

DROP Discards one or more records.

FIND Selects records that begin with a specified text.

FRLABEL Selects records that follow a specified target including the target record. The specified target
must begin in the first column of a record.

FRTARGET Selects all records starting with the first record selected by a specified stage.

HOLE Discards records.

INSIDE Selects records between two specified targets not including the records containing the target.
The specified targets must begin in the first column of a record.

LOCATE Selects records that contain a specified string of characters. The characters can appear at
any position within the record.

NFIND Selects records that do not begin with a specified text.

NINSIDE Selects records not located between two specified targets. The records containing the targets
are also selected. The specified targets must begin in the first column of a record.

NLOCATE Selects records that do not contain a specified string of characters.

PICK Compares a field in the primary input stream record to a specified string or a second field in
the record, and selects the record if the comparison satisfies the specified relation.

CMS Pipelines Summary

Appendix B. CMS Pipelines Summary 263

Table 3. What Each Stage Does (continued)

Stage Task Performed

OUTSIDE Selects records not located between two specified targets. The records containing the targets
are not selected. The specified targets must begin in the first column of a record.

STRFIND Selects records that begin with a specified string of characters.

STRFRLABEL Selects records that follow a specified target including the target record. The specified string
must begin in the first column of a record.

STRNFIND Selects records that do not begin with a specified string of characters.

STRTOLABEL Selects records that precede a specified target, not including the target record. The specified
target must begin in the first column of a record.

STRWHILELABEL Selects consecutive records that begin with a specified string. The records must be at the
beginning of the input stream. The specified string must begin in the first column of a record.

TAKE Selects one or more records from the beginning or end of the primary input stream.

TOLABEL Selects records that precede a specified target not including the target record. The specified
target must begin in the first column of a record.

TOTARGET Selects all records up to but not including the first record selected by a specified stage.

UNIQUE Compares the contents of adjacent records and discards or retains the duplicate records.

WHILELABEL Selects consecutive records that begin with a specified string. The records must be at the
beginning of the input stream. The specified target must begin in the first column of a record.

TCP/IP

HOSTBYADDR Resolves IP (internet protocol) addresses into a domain or host name.

HOSTBYNAME Resolves a domain or host name into an IP (internet protocol) address.

HOSTID Writes a single output record containing the default IP (internet protocol) address of the
TCP/IP system in dotted-decimal notation.

HOSTNAME Writes a single output record containing the host name of the TCP/IP system.

IP2SOCKA Converts a human readable port number and IP (internet protocol) address to a special
sixteen-byte hexadecimal record, which is used by the UDP stage to create datagrams.

SOCKA2IP Converts a special sixteen-byte hexadecimal input record, which is used by the UDP stage to
create datagrams, to a human readable port number and IP (internet protocol) address; it
converts a four-byte input record to a readable IP address.

TCPCLIENT Connects to a TCP/IP server, transmits its input records to the server, and writes data it
receives from the server onto its output stream.

TCPDATA Receives data from and transmits data to the client from the server.

TCPLISTEN Listens for and accepts connection requests on a TCP/IP port using the socket interface to
TCP/IP.

XEDIT

XEDIT Reads from or writes to a file that is in the ring of files currently being edited.

XMSG Issues XEDIT messages during an XEDIT session.

�PI�

Table 4. What Each Pipeline Subcommand Does

Subcommand Task Performed

ADDPIPE Adds one or more pipelines to the set of running pipelines.

ADDSTREAM Defines an unconnected input or output stream.

CMS Pipelines Summary

264 z/VM: CMS Pipelines User’s Guide

Table 4. What Each Pipeline Subcommand Does (continued)

Subcommand Task Performed

BEGOUTPUT Enters an implied output mode where anything directed to the subcommand environment is
written to the currently selected output stream.

CALLPIPE Invokes a subroutine pipeline.

COMMIT Commits a stage to a different commit level.

GETRANGE Extracts part of a record to be processed in the same way CMS Pipelines built-in programs
select a substring of the input record.

MAXSTREAM Gets the number of the highest numbered input or output stream.

MESSAGE Displays a message at the terminal.

NOCOMMIT Disables automatic commits performed by pipeline subcommands.

OUTPUT Writes a record to the currently selected output stream.

PEEKTO Reads a record from the currently selected input stream without removing the record from the
stream.

READTO Reads a record from the currently selected input stream.

RESOLVE Determines if a stage is contained within an attached filter package.

REXX Invokes a REXX program as a stage.

SCANRANGE Establishes a token that is used by GETRANGE to parse an argument string containing an
inputRange specification.

SCANSTRING Parses an argument string containing a delimitedString specification in the same way that
CMS Pipelines built-in programs scan their arguments when a delimitedString is specified.

SELECT Selects a stream.

SETRC Sets a return code.

SEVER Disconnects from the currently selected stream and restores the previous connection, if any.

SHORT Connects the currently selected input stream to the currently selected output stream.

STAGENUM Gets the relative position of a specified stage in a pipeline of the primary stream.

STREAMNUM Gets the stream number of a specified stream.

STREAMSTATE Gets the state of a specified stream.

Table 5. What Each Assembler Macro Does

Assembler Macro Task Performed

PIPCMD Issues primary input stream records as built-in stages or pipeline subcommands.

PIPCOMMT Increase a stage’s commit level or receive the current aggregate return code.

PIPDESC Set up a static area containing the constants defining such characteristics as the label
referred to in the entry point table, the entry point of the program, the size of the work area
and a program identifier to be used in the CMS Pipelines error messages.

PIPEPVR Declare the address of a table of addresses required by pipeline assembler macros.

PIPINPUT Read and consume the next record from the currently selected input stream.

PIPLOCAT Obtain the address and length of the next record in the currently selected input stream
without consuming the record.

PIPOUTP Write a record to the currently selected output stream from a buffer.

PIPSEL Select a stream for subsequent use by assembler macros that reference streams, such as
PIPINPUT, PIPLOCAT, PIPSEVER, or PIPSHORT. The stream specified becomes the
currently selected stream.

CMS Pipelines Summary

Appendix B. CMS Pipelines Summary 265

Table 5. What Each Assembler Macro Does (continued)

Assembler Macro Task Performed

PIPSEVER Detach the connected, currently selected stream from the stage in the pipeline that issued the
PIPSEVER assembler macro.

PIPSHORT Connect the currently selected input stream directly to the currently selected output stream.

PIPSTRNO Specify a stream by number or name and have the stream number returned.

PIPSTRST Determine from the status of the specified stream whether or not there is input or output data.

�PI end�

Note: Additional stages exist that are not documented in this book. These can be
found in the CMS/TSO Pipelines: Author’s Edition, SL26-0018.

CMS Pipelines Summary

266 z/VM: CMS Pipelines User’s Guide

Appendix C. Migrating to CMS Pipelines

CMS Pipelines in z/VM version 6 release 1 is based on a program that can be
ordered separately. In Europe, the Middle East, and Asia, the program can be
ordered as CMS Pipelines 1.1.6 5785-RAC Program Offering. In the USA, it can be
ordered as RPQ P81059 5799-DKF 1.1.1. Both of these programs provide a level of
function that we refer to as CMS Pipelines 1.1.6. For brevity, we refer to the CMS
Pipelines support included in z/VM V6.1 as z/VM CMS Pipelines.

This appendix describes some differences between z/VM CMS Pipelines and CMS
Pipelines 1.1.6. If you haven’t used CMS Pipelines 1.1.6, skip this appendix.

Even though you are using z/VM V6.1, your installation may also have CMS
Pipelines 1.1.6 installed. To use z/VM CMS Pipelines, make sure the disk
containing CMS Pipelines 1.1.6 is not accessed before the S disk in the CMS
search order. (Enter listfile pipe module * to find the disks containing CMS
Pipelines.) If you want to use CMS Pipelines 1.1.6 instead of z/VM CMS Pipelines,
access the disk containing CMS Pipelines 1.1.6 ahead of the S-disk.

To verify that you are using the desired version of pipelines enter:
pipe query version

The response indicates which version you are using. Another indicator of the
version being used is the message prefix. Messages produced by z/VM CMS
Pipelines begin with FPL.

Note: IBM will accept documentation indicating that a defect is causing a problem
in what IBM considers an unsupported environment for z/VM CMS Pipelines.
IBM does not guarantee service results or represent or warrant that any
errors will be corrected.

Terminology Differences
The following list summarizes the major terminology differences between z/VM CMS
Pipelines and CMS/TSO Pipelines 1.1.6:

v In CMS/TSO Pipelines 1.1.6, filters, host command interfaces, and device drivers
were collectively referred to as built-in programs. In z/VM CMS Pipelines we use
the term stage instead. We also distinguish between stages that are included
with z/VM and those that users can write. Those included with z/VM are referred
to as built-in stages, while those users write are known as user-written stages.

v In CMS/TSO Pipelines 1.1.6., programs you wrote for use in pipelines were
referred to as REXX programs or Assembler programs, or REXX filters or
Assembler filters. In z/VM CMS Pipelines, we refer to these programs as
user-written stages.

v In CMS/TSO Pipelines 1.1.6, functions like READTO and OUTPUT that are used
in REXX filters are known as pipeline commands. In z/VM CMS Pipelines, we
refer to these as pipeline subcommands, because the programs execute in a
pipeline environment (similar to the XEDIT environment with its XEDIT
subcommands).

v In z/VM CMS Pipelines, we use the terms filter, host command interface, and
device driver to categorize stages. To the PIPE command, however, they are all
just stages that happen to do different kinds of functions.

© Copyright IBM Corp. 1991, 2009 267

Writing Stages
In CMS/TSO Pipelines 1.1.6, you can write filters (stages) in several high-level
languages and in Assembler language. In z/VM CMS Pipelines, REXX and
Assembler are the only supported languages for writing stages. Both interpreted
and compiled REXX are supported, as well as Assembler.

Existing filters that are written in C/370™, PL/I, or Assembler language may continue
to run on z/VM, but these are unsupported environments.

Differences in DB2 Server for VM Support
z/VM CMS Pipelines includes the required linkages to the DB2 Server for VM
front-end module ARIRVSTC. See z/VM: CMS Planning and Administration for
instructions on preparing CMS Pipelines for use with DB2 Server for VM.

Differences in the QUERY Stage
When the LEVEL operand is specified and the primary output stream is not
connected, QUERY displays a message similar to the following:
FPLINX086I CMS/TSO Pipelines, pppp-ppp level

Where:

pppp-ppp/pppp-ppp is the product number

level is the level of Pipelines code

If the primary output stream is connected, a record containing the hexadecimal
value of the Pipelines level is written to the output stream.

If the VERSION operand is specified and the primary output stream is not
connected, QUERY displays the following message:
FPLINX086I CMS/TSO Pipelines, pppp-ppp version
(Version.Release/Mod) - Generated dd mmm yyyy at hh:mm:ss

Where:

pppp-ppp/pppp-ppp is the product number

version is the version, release, and modification

dd mmm yyyy at hh:mm:ss is the date and time the code was generated

These messages let you use QUERY to distinguish between various levels of z/VM
CMS Pipelines code and CMS/TSO Pipelines code.

Changed Filter Package Execs
The PIPGFTXT EXEC and the PIPGFMOD EXEC are now to be used to build a
filter package containing REXX or Assembler stages. These execs replace the
PIPGREXX EXEC and the PIPLNKRX EXEC which built filter packages of only
REXX stages.
v PIPGFTXT EXEC replaces PIPGREXX EXEC
v PIPGFMOD EXEC replaces PIPLNKRX EXEC

Filter packages created with the PIPGREXX and PIPLNKRX EXECS can be
recreated with the PIPGFTXT and PIPGFMOD execs.

Migrating to CMS Pipelines

268 z/VM: CMS Pipelines User’s Guide

Changed Commands
The names of some stages have changed (see Table 6). However, synonyms have
been defined in z/VM CMS Pipelines so that pipelines using the CMS Pipelines
1.1.6 names will continue to work.

Table 6. Name Changes

CMS Pipelines 1.1.6 Name z/VM CMS Pipelines Name

DISKBACK FILEBACK

DISKFAST FILEFAST

DISKRAND FILERAND

DISKSLOW FILESLOW

DISKUPDATE FILEUPDATE

SYNCHRONISE SYNCHRONIZE

TOKENISE TOKENIZE

TRANSLATE XLATE

For the commands that are not part of the z/VM CMS Pipelines support and are
reserved for IBM use, refer to the chapter discussing restrictions in the z/VM: CMS
Pipelines Reference.

Note that the ISSUEMSG pipeline subcommand is reserved for IBM use. The
message numbering scheme does not correspond with the z/VM CMS Pipelines
messages.

Some commands and operands were announced as obsolete in CMS Pipelines
1.1.6 and are not supported by z/VM CMS Pipelines, as follows:

v COUNTLNS is not supported.

Use COUNT LINES instead.

v CPASIS is not supported.

Use CP instead.

v NULLS and NONULLS options are not supported

z/VM CMS Pipelines behaves as though the NULLS option is specified. In z/VM
CMS Pipelines, NULLS and NONULLS are invalid options.

v SELECT INPUT ANY is not supported.

Use SELECT ANYINPUT instead. In z/VM CMS Pipelines, SELECT INPUT ANY
selects a stream named ANY.

v The COUNT stage does not support the STACK, LIFO, and FIFO operands.

Connect COUNT’s secondary output stream to STACK if you want the count
placed on the stack for some other program to process. It is likely that you will
wish to store the count in a REXX variable; use VAR or STEM to do so.

v The PRINTMC, PUNCH, and URO stages do not support the STOP operand.
(This operand is reserved for IBM use only.)

v XTRACT is not supported.

Use MEMBERS instead. Specify the file type as TXTLIB and asterisk as the file
mode.

v The PIPE command, ADDPIPE subcommand, and CALLPIPE subcommand do
not support the STOP option. STOP is reserved for IBM use only.

Migrating to CMS Pipelines

Appendix C. Migrating to CMS Pipelines 269

The SQL stage has a default operand of COMMIT. The default when using
CMS/TSO Pipelines 1.1.6 is RELEASE.

Changed Sample Programs
The SC XEDIT macro, which aligns comments in REXX execs, is provided with
CMS/TSO Pipelines 1.1.6. It is also provided with z/VM CMS Pipelines as a sample
program, but is renamed to SCM XEDIT.

Changed Messages and Return Codes
The message numbers and message texts in z/VM CMS Pipelines are the same as
those in CMS/TSO Pipelines 1.1.6.

Operating Environments Supported by z/VM CMS Pipelines
z/VM CMS Pipelines is supported only in the CMS environment on z/VM V6.1. It is
not supported on GCS, MVS, or any other operating environments.

Migrating to CMS Pipelines

270 z/VM: CMS Pipelines User’s Guide

Appendix D. ECHONET C Source Code

Figure 318 is the C source code for a user-written program titled ECHONET. This
program is a network server that echoes data until it receives an end-of-message
token or a timeout occurs. Immediately after a client connection request is
accepted, the greeting record (EOD) is sent to the server as an end-of-message
token. The messages received by the server can be taken and echoed “as is” or
can be considered a sequence of blocks, each preceded by a block length. In this
case, blocks are echoed. The ECHONET C program is compiled with the DEFINE
option to specify either the VM or AIX platform:

-DAIX on AIX platforms
DEF(VM) on VM

Note: If you include the value VM with the compiler option DEFINE, for example,
DEF(VM,other values), it compiles on your z/VM system or produces a
program to run on your z/VM system. If you wish to perform a compile on an
AIX system, use the option DAIX.

The following operands are used:

portnumber Provides the port number used by the server to listen to clients’
requests. Unless provided, the default port number 45678 will be
used. If used, this option must be first.

NOGreeting Prevents the greeting token from being sent.

TImeout seconds
Sets the number of seconds to wait for the next client message and
then closes the connection if a message is not received.

BUFfer size Sets the buffer size for messages

CLients max_number
Sets the maximal number of consecutive client connections before
the server stops.

SF or SF4 Specifies that messages arrive in blocks. Each block is preceded
with the block size in two (SF) or in four (SF4) network bytes. This
prevents partial messages from being echoed because the block of
messages is not echoed until all messages are collected. Echoed
messages are also blocked in the same way they arrived.

/* ECHONET */
#define SERV_PORT 45678 /* Set default values */
#define TIMEOUT 3
#define MAX_CLIENTS 12
#define UNBLOCKED 0
#ifdef AIX /* AIX header files */

#include <sys/types.h>
#include <sys/select.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <time.h>

Figure 318. ECHONET C Source Code for the ECHO Server (Part 1 of 13)

© Copyright IBM Corp. 1991, 2009 271

typedef int boolean_t; /* Define boolean type for AIX */
#endif

#ifdef VM /* VM header files */
#include <manifest.h>
#include <bsdtypes.h>
#include <socket.h>
#include <in.h>
#include <bsdtime.h>
#include <tcperrno.h>

/* Define boolean type for VM */
typedef enum {FALSE, TRUE} boolean_t;
#define perror(s) tcperror(s) /* Define error function for VM */

#endif /*ifdef VM*/

/* ---------- No platform dependent code beyond this line --------- */

#include <stdio.h> /* Header files for both AIX and VM */
#include <errno.h>
#include <netdb.h>
#include <stdlib.h>

#define BUF_LEN 512 /* Definitions */
#define SF 2
#define SF4 4
#define NODE_ADDR_LEN 16
#define NODE_NAME_LEN 64
#define MAX_OPT_LEN 64
#define HOSTENT_LEN sizeof(struct hostent)
#define SOCKADDR_LEN sizeof(struct sockaddr_in)
#define EOD "EOD"

/* Internal function prototypes */
int deblock_SF(const char*, int, int, int*, char*, int*, int);
int deblock_size(const char*, int, int);
int block_SF(const char*,const int, char*, int);
int strnupper(char *, const size_t);
int abbrev(const char*, const char *, int);
int isConnected(void);

main (ac, av) /* Start C program */
int ac;
char *av[];
{

unsigned short given_port=0;
int saddr_len=saddr_len = SOCKADDR_LEN;

/* Length of the sockaddr_in structure */
int i, j; /* Indices */
int jcl; /* Current client index */
int jbuff; /* Displacement in inbuff */
int msg_len; /* Incoming message length */
int leftover =0; /* Bytes in buffer not used in record */

Figure 318. ECHONET C Source Code for the ECHO Server (Part 2 of 13)

ECHONET C

272 z/VM: CMS Pipelines User’s Guide

int rec_size; /* Outgoing block size */
int rec_len; /* Accrued record length */
int blk_len; /* Length of block ready to echo */
int blk_type =UNBLOCKED;/* Block type unblocked */
int try, tries =TIMEOUT;/* Timeout variable */
int max_clients =MAX_CLIENTS;/* MAX_CLIENT variable */
int first_msg; /* Distinguish first message from others */
int s, ns; /* Socket descriptors */

/* Statistics variable */
int tot_msgs, rec_bytes, blk_bytes, longest, shortest;
int buf_size = BUF_LEN; /* Buffer length variable */
int rc; /* Return code variable */

unsigned long *a; /* Used for tracing*/
boolean_t greeting=TRUE; /* Initial values for boolean variables */
boolean_t connected=FALSE;
boolean_t keep_reading;
boolean_t force_client;
boolean_t trace=FALSE;
char opt[MAX_OPT_LEN]; /* Current option */
char eod[4] = EOD; /* End of connection token, full word */
char *inbuff; /* All buffer sizes defined dynamically */
char *record;
char *outbuf;
char *buffer;

/* Host variables */
char srvr_nodeaddr[NODE_ADDR_LEN];
char clnt_nodeaddr[NODE_ADDR_LEN];
char srvr_nodename[NODE_NAME_LEN];
char clnt_nodename[NODE_NAME_LEN];

fd_set except_set; /* Exceptions set */
fd_set readfds;

struct timeval try_period;
struct hostent *host; /* Structure type variables */
struct sockaddr_in srvr_addr;
struct sockaddr_in clnt_addr;

if (ac >= 2) /* Ensure operands are provided */
given_port = (unsigned short) atoi(av[1]);

else {
printf("Usage: %s port\n", av[0]);
printf("Otherwise port %d to listen\n", SERV_PORT);

}; /* End operand check */
/* Use default port if not provided */

if (given_port == 0) given_port = SERV_PORT;
printf("Port assigned to listen is %d\n", given_port);

if (ac > 1) /* Set options; process operands */ {
for (j=1; j<ac; j++) {

bcopy(av[j], opt, MAX_OPT_LEN);
strnupper(opt, MAX_OPT_LEN);
greeting = (abbrev("NOGREETING", opt, 3))

? FALSE : greeting;

Figure 318. ECHONET C Source Code for the ECHO Server (Part 3 of 13)

ECHONET C

Appendix D. ECHONET C Source Code 273

if (abbrev("TIMEOUT", opt, 2))
if ((i=atoi(av[j+1]))!=0)

tries = i;
if (abbrev("CLIENTS", opt, 2))

if ((i=atoi(av[j+1]))!=0)
max_clients = i;

if (abbrev("BUFFER", opt, 3))
if ((i=atoi(av[j+1]))!=0 && i >= SF4+strlen(eod))

buf_size = i;
if (abbrev("SF4", opt, 3))

/* Record must have 4 spec bytes and at least one byte */
blk_type = SF4;

if (abbrev("SF", opt, 2))
/* Record must have 2 spec bytes and at least one byte */
blk_type = SF;

if (abbrev("TRACE", opt, 2))
/* Record must have 2 spec bytes and at least one byte */
trace = TRUE;

}; /* End for j=... */
}; /* End setting options */
if (trace) { /* If tracing active, then print */

printf("%s: greeting = %s\n", av[0], greeting?"True":"False");
printf("%s: timeout = %d\n", av[0], tries);
printf("%s: up to %d consecutive clients\n", av[0], max_clients);
printf("%s: buffer size used = %d\n", av[0], buf_size);
printf("%s: blk_type = %d or <%s>\n", av[0],

blk_type, (blk_type==SF) ? "SF"
: (blk_type==SF4) ? "SF4"

: "UNBLOCKED");
printf("%s: tracing is %s\n",av[0], trace?"on":"supressed");

}; /* End print of tracing */

/* Get local host name */

gethostname(srvr_nodename, sizeof(srvr_nodename));

/* Check host name with gethostbyname */
if ((host = gethostbyname (srvr_nodename)) == NULL) {

fprintf(stderr,"%s: ", av[0]);
perror("Unsuccessful host name resolution\n");
exit (9);

}; /* End checking host name */
printf ("%s started on <%s>", av[0], host->h_name);

Figure 318. ECHONET C Source Code for the ECHO Server (Part 4 of 13)

ECHONET C

274 z/VM: CMS Pipelines User’s Guide

/* Fill in srvr_addr structure to bind it to socket later */

bzero((char *) &srvr_addr, SOCKADDR_LEN);
srvr_addr.sin_family = AF_INET;
srvr_addr.sin_addr.s_addr = htonl(INADDR_ANY);
srvr_addr.sin_port = htons (given_port);
bcopy (host->h_addr, &srvr_addr.sin_addr, host->h_length);

/* Determine dotted decimal address of server */
bcopy(inet_ntoa(srvr_addr.sin_addr.s_addr)

,srvr_nodeaddr
,sizeof(srvr_nodeaddr));

printf(": %s\n", srvr_nodeaddr);
/* Create an Internet stream TCP socket */
if ((s = socket(AF_INET, SOCK_STREAM, 0)) == -1) {

fprintf(stderr,"%s: ", av[0]);
perror ("Cannot get a socket: ");
exit (9);

}; /* End Internet stream TCP socket creation */
/* Bind socket to port */
if (bind (s, &srvr_addr, sizeof(srvr_addr)) == -1) {

fprintf(stderr,"%s: ", av[0]);
perror ("Cannot bind a socket");
exit (8);

}; /* End binding socket to port */
/* Set client limitations */

if ((listen (s, MAX_CLIENTS)) == -1) {
fprintf(stderr,"%s: ", av[0]);
perror("Failed while listening");
exit (7);

}; /* End setting client limitations */
/* Allocate memory for buffers */

if ((inbuff = (char*)calloc(3,buf_size)) == NULL) {
fprintf(stderr,"%s: %s\n", av[0], strerror(errno));
exit(6);

}; /* End buffer memory allocation */
record=inbuff+buf_size;
outbuf=record+buf_size;

/* Serve maximum # of clients connected at once */
for (jcl=0; jcl < max_clients; ++jcl)
{

tot_msgs=0, rec_bytes=0, blk_bytes=0;
longest=0; shortest=buf_size;

/* Use 'ns' for this client */
if ((ns = accept (s, &clnt_addr, &saddr_len)) == -1) {

fprintf(stderr,"%s: ", av[0]);
perror ("Cannot accept");
exit (5);

}; /* End maximum client connection routine */
connected=TRUE;

Figure 318. ECHONET C Source Code for the ECHO Server (Part 5 of 13)

ECHONET C

Appendix D. ECHONET C Source Code 275

/* Determine the client name from the address accepted in clnt_addr */
host = gethostbyaddr(&clnt_addr.sin_addr.s_addr

,sizeof(struct in_addr)
,AF_INET);

if (host == NULL)
printf("unsuccessful client host by addr resolution\n");

else
printf ("\n Client's <%s> connection is accepted",

host->h_name);
bcopy(inet_ntoa(clnt_addr.sin_addr.s_addr)

,clnt_nodeaddr
,sizeof(clnt_nodeaddr));

printf(": %s\n", clnt_nodeaddr); /* Print client IP address */
/* Print port number */

printf(" client port to strike back: %d\n", clnt_addr.sin_port);
/* ECHONET greeting: send EOD code to hold for 'last' record */

if (greeting) /* Prepare greeting phrase first if unblocked */ {
bzero(outbuf, buf_size);
if (blk_type == UNBLOCKED) {

blk_len =strlen(eod);
bcopy(eod, outbuf, blk_len);

} /* End preparing unblocked greeting*/
else { /* Prepare greeting phrase first if blocked */

if ((blk_len=block_SF(eod, strlen(eod), outbuf, blk_type))
!= strlen(eod)+blk_type) {

fprintf(stderr,"%s: Cannot block greeting\n", av[0]);
exit (4);

};
}; /* End preparing blocked greeting */
if (send(ns /* Send greeting */

,outbuf
,blk_len /* Just EOD, blocked or not */
,0) < 0) {

if (!(connected=isConnected())) { /* Check connection */
close(ns);
continue; /* If no connection, go to next client */

/* Otherwise, continue */
};

/* Exit if errors occurred */
fprintf(stderr, "%s: ", av[0]);
perror ("Greeting --> client failed");
exit(3);

};
++tot_msgs; /* Gather statistics */
blk_bytes += blk_len;

}; /* End 'if' greeting*/

/* Read messages, no longer then buf_size, into 'in' buffer and
echo them until timeout or specific EOD message received */

first_msg = TRUE; /* Assume this is first message */
buffer =inbuff; /* Nothing in a buffer yet */
rec_size=0; /* Record size is not known */
rec_len =0; /* Record is not collected yet */
jbuff =0;

Figure 318. ECHONET C Source Code for the ECHO Server (Part 6 of 13)

ECHONET C

276 z/VM: CMS Pipelines User’s Guide

/* Start 'while' loop to read requests from client */
bzero(inbuff, buf_size);
while(TRUE) /* Get lines from client until EOD or timeout */ {

for (try=0; try<tries; ++try) { /* Set timeout loop */
try_period.tv_sec=1; try_period.tv_usec=0;
FD_ZERO(&readfds); FD_SET(ns, &readfds);
if (select(ns+1 /* Check for exceptions */

,&readfds /* Check for read request */
,NULL, NULL
,&try_period) < 0) {

fprintf(stderr, "%s: ", av[0]); /* Verify select */
perror("Call to select failed");
exit (2);

};

rc = FD_ISSET(ns, &readfds);
if (rc > 0) /* Get data from socket */

break; /* Break timeout loop */
};

if (try >= tries) { /* Check if timeout occurred */
printf("%s: timeout reached for the client"

" or client disconnected\n",av[0]);
/* If timeout/disconnect occurred, end 'while' loop and

disconnect from client */
break;

};
/* Read socket */
if ((msg_len = read(ns

,buffer+jbuff
,buf_size-(buffer-inbuff)-jbuff)

) < 0) {
if (!(connected=isConnected())) /* Check connection */

break; /* 'while' loop and wait for a new client */
fprintf(stderr, "%s: ",av[0]);
perror("cannot read");

/* If disconnected, end 'while' loop and wait for new client */
break;

};
msg_len += jbuff; /* Retain message lengths */
jbuff =0;

keep_reading = FALSE;
force_client = FALSE;

/* Determine whether entire block arrived and put in 'inbuf' */
do { /* Do 'until' all blocks extracted */

if (trace) { /* Print trace */
a = (unsigned long *) inbuff;
printf("%s: got in inbuff: %08X %08X %08X %08X\n",

av[0], *a++,*a++, *a++,*a);
};

/* If data is unblocked ... */
if (blk_type == UNBLOCKED) {

bzero(outbuf, buf_size);
bcopy(inbuff, outbuf, msg_len);

Figure 318. ECHONET C Source Code for the ECHO Server (Part 7 of 13)

ECHONET C

Appendix D. ECHONET C Source Code 277

blk_len =rec_size =rec_len =msg_len;
} /*End unblocked data handling */

/* If data is blocked ... */
else /*blk_type != UNBLOCKED*/ {

if (rec_size == 0) /* Is record size known? */ {
bzero(record,buf_size); /* Determine record size */
if (msg_len < blk_type) {

jbuff=msg_len;
/* Keep reading if prefix not completely read */

keep_reading=TRUE;
break; /* End 'until' to resume reading from socket */

}; /* End msg_len < blk_type */
/* If message length is less than block type, determine record size */

rec_size=deblock_size(buffer
,msg_len
,blk_type);

buffer += blk_type;
msg_len -= blk_type;

/* Error checking */
if (rec_size < 0 || rec_size > buf_size-blk_type) {

if (trace) {
fprintf(stderr, "%s: ",av[0]);
fprintf(stderr, "record size %d exceeds "

"limitation %d\n",rec_size,
buf_size-blk_type);

}; /* End of tracing message */
rec_len +=msg_len;
bcopy(buffer, record, rec_len);
force_client=TRUE;
break; /* 'until', then 'while' and go to next client */

}; /* Insufficient rec_size */
};/*rec_size == 0*/

/* Deblock next buffer record */
rec_len=deblock_SF(buffer /* New rec_len set */

,msg_len
,rec_len /* Current length */
,&rec_size /* in/out <=== */
,record /* out <=== */
,&leftover /* out <=== */
,blk_type /* SF or SF4 */

);

if (rec_len < 0) { /* Error checking */
force_client=TRUE;
break; /* 'until', then 'while' and go to next client */

}; /* rec_len < 0 */
/* If incomplete record is left over, move to beginning of buffer */

if (leftover) {
bcopy(buffer+(msg_len-leftover), inbuff, msg_len);
msg_len = leftover;

};
buffer = inbuff; /* Reset the buffer */

}; /* blk_type != UNBLOCKED */

Figure 318. ECHONET C Source Code for the ECHO Server (Part 8 of 13)

ECHONET C

278 z/VM: CMS Pipelines User’s Guide

bzero(inbuff+leftover, buf_size-leftover);
if (rec_len < rec_size) /* If record incomplete, keep reading */

keep_reading=TRUE;
else /* Rec ready, put it out */ {

rec_size =0; /* Be ready for next record */
rec_bytes += rec_len+blk_type;
++tot_msgs;
if (rec_len > longest) longest=rec_len;
if (rec_len < shortest) shortest=rec_len;

/* Record is ready. Now echo it; block record before sending */
if (blk_type != UNBLOCKED) {

bzero(outbuf, buf_size);
if ((blk_len=block_SF(record

,rec_len
,outbuf
,blk_type)) < 0) {

/* Error checking */
fprintf(stderr, "%s: ",av[0]);
perror("unable to block a record");
exit(1);

}; /* Block_SF */
rec_len =0;

}; /* blk_type != UNBLOCKED */
/* outbuf is ready to return */

/* If trace was requested, print 'outbuf' */
if (trace) {

a = (unsigned long *) outbuf;
printf("%s: ready to echo: %08X %08X %08X %08X\n",

av[0], *a++,*a++, *a++,*a);
};
rc=send(ns /* Send echo to client */

,outbuf
,blk_len
,0);

if (rc < 0) {
force_client=TRUE;
if (!(connected=isConnected())) /* Check connection */

break; /* End 'until', then 'while' reading messages */
fprintf(stderr,"%s: ", av[0]); /* Error check */
perror("Echoing failed");
break; /* End 'until' unblocking */

}; /* End sending 'outbuf' */
blk_bytes += blk_len;

}; /* rec_len == rec_size */
} while (leftover!=0); /* End of 'until' loop */

/* If still reading, continue */
if (keep_reading)

continue; /* 'while' so next read happens */

if (force_client) /* Disconnect from client if error */
break; /* 'while' and go for a next client */

Figure 318. ECHONET C Source Code for the ECHO Server (Part 9 of 13)

ECHONET C

Appendix D. ECHONET C Source Code 279

/* Verify the EOD */

if (bcmp(outbuf+blk_type, eod, strlen(eod))==0
&& blk_len == strlen(eod)+blk_type) {

if (trace) /* If trace requested, print it */
printf("%s: end-of-data token received\n",av[0]);

break; /* While to disconnect */
}; /* Exact notice that no more messages available */

}; /* While(TRUE) to read messages from current client */
/* If last record size is greater than record length, report error */

if (rec_size > rec_len) /* Last record is incomplete */ {
/* This is possible only for blocked records */
fprintf(stderr,"%s: Last message is incomplete\n", av[0]);

/* Flush outbuf if blocking and incomplete */
if (trace) { /* If trace requested, print it */

printf("%s: Incomplete %d bytes of record will flush\n",
av[0], rec_len);

printf("%s: record: >%s<\n", av[0], record);
};

/* If still connected, echo incomplete record */
if (connected) /* Then flush incomplete message */ {

blk_len=block_SF(record, rec_len, outbuf, blk_type);
if (send(ns

,outbuf
,blk_len /* Send incomplete */
,0) < 0) {

if ((connected=isConnected())) {
fprintf(stderr,"%s: ", av[0]);
perror("Flushing failed");

};
} /* Send */
else {

blk_bytes += blk_len;
if (rec_len > longest) longest=rec_len;

}; /* Send */
if (trace)

printf("%s: Last incomplete record is flushed\n",av[0]);
}; /* Connected */

}; /* Flushing */
/* Close client connection */

close(ns);
printf("\n%s finished with the client #%d\n", av[0], jcl+1);

/* Report statistics */
printf(" Total messages: %d, bytes received: %d, sent: %d\n",

tot_msgs, rec_bytes, blk_bytes);
printf(" Shortest message received: %d, longest: %d\n",

shortest, longest);
}; /* All clients are done */
/* Close server socket */
close(s);
printf("%s ended\n", av[0]);
exit(0);

}; /* ECHONET ended */

Figure 318. ECHONET C Source Code for the ECHO Server (Part 10 of 13)

ECHONET C

280 z/VM: CMS Pipelines User’s Guide

/* FUNCTION CALLS */
/* ----------------- Is Client Connected --------------- */

int
isConnected(void)
{

if (errno==ECONNRESET /* Connection reset by peer */
||errno==EPIPE) { /* Broken pipe */

perror (""); /* Print error message */
return FALSE; /* End 'while' loop and wait for a new client */

};
if (errno != 0) /* If another error, print it */

fprintf(stderr,"%s\n", strerror(errno));
return TRUE;

}; /* End client connection verification */

/* -- Check for correct abbreviation operands -- */

int
abbrev (const char * sample

,const char * var
,const int up_to)

{
register int j;
int cmp_max;

if ((cmp_max=strlen(var)) > strlen(sample)
|| cmp_max < up_to

) return (0);
for (j=up_to; j <= cmp_max; j++)

if (strncmp(sample, var, j))
return (0);

return (1);
}; /* End abbreviation checking */
/* -- Convert String to Uppercase -- */

#include <ctype.h>
int
strnupper(char *s

,const size_t n)
{

register int j;
int c;

for (j=0; j<n && s[j]!='\0';++j)
s[j]=toupper(s[j]);

return j;
}; /*strnupper*/

/* ----------------- deblock_size -------------- */

#define SF 2
#define SF4 4

Figure 318. ECHONET C Source Code for the ECHO Server (Part 11 of 13)

ECHONET C

Appendix D. ECHONET C Source Code 281

/* Return size of unblocking record or return negative value
if problem exists */

int
deblock_size(const char * sample /* Sample to cut a block from */

,int sam_len /* Its length */
,int SF_type /* Type SF or SF4 only */
)

{
unsigned short len2;
unsigned long len;

if (SF_type != SF && SF_type != SF4) return -1;

if (sam_len < SF_type) return -1;
switch(SF_type) {

case SF: bcopy(sample, (char *) &len2, SF);
len = len2-SF;

break;
case SF4: bcopy(sample, (char *) &len, SF4);

len -= SF4;
break;

}; /* Switch */
return (int) len;

}; /* End deblock_size */
/* ----------------- deblock_SF ---------------- */
/* Return length of accrued record in process of unblocking */
int
deblock_SF(const char * sample /* Sample to cut a block from */

,int sam_len /* Its length */
,int rec_len /* Accrued record length */
,int * pRec_size /* Block size */
,char * record /* Where record which length */

/* Must be sufficiently collected */
,int * pLeftover /* Bytes left beyond the record */
,int SF_type /* Type SF or SF4 only */
)

{ /* If rec_size =0, start (otherwise continue) collecting a
record. After adding to a record, some bytes may be left over.
If rec_size !=0, then rec_len bytes are already collected. */

unsigned short len2;
unsigned long len;
int copy_len;

Figure 318. ECHONET C Source Code for the ECHO Server (Part 12 of 13)

ECHONET C

282 z/VM: CMS Pipelines User’s Guide

/* Verify SF type */
if (SF_type != SF && SF_type != SF4) return -1;

/* Switch between SF and SF4 */
if (*pRec_size == 0) {

if (sam_len < SF_type || rec_len != 0) return -1;
switch(SF_type) {

case SF: bcopy(sample, (char *) &len2, SF);
len = len2-SF;

break;
case SF4: bcopy(sample, (char *) &len, SF4);

len -= SF4;
break;

}; /* End of Switch */
if ((*pRec_size=len)<1) return-1;
sample += SF_type;
sam_len -= SF_type;

}; /* End rec_size==0 */
if ((copy_len=*pRec_size-rec_len)<=0) return -1;
copy_len= (copy_len < sam_len) ? copy_len : sam_len;
bcopy(sample, &record[rec_len], copy_len);
*pLeftover = sam_len-copy_len;
return rec_len+copy_len;

}; /* End deblock_SF */
/* ----------------- block_SF ------------------ */

int block_SF(const char *record /* Blocks record */
,const int rec_size /* Return length */
,char *buffer
,int SF_type
)

{
unsigned short len2;
unsigned long len;
if (SF_type != SF && SF_type != SF4) return -1; /* Verify SF type */

if (rec_size < 1) return -1;
len = rec_size + SF_type;
switch(SF_type){ /* Switch between SF and SF4 */

case SF: if (len > 65535) return -1;
len2 = (unsigned short)len;
bcopy(&len2, buffer, SF);

break;
case SF4: bcopy(&len, buffer, SF4);
break;

}; /*End of switch*/
bcopy(record, &buffer[SF_type], rec_size);
return (int)len;

}; /* End of block_SF */

Figure 318. ECHONET C Source Code for the ECHO Server (Part 13 of 13)

Appendix D. ECHONET C Source Code 283

284 z/VM: CMS Pipelines User’s Guide

Notices

This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in all
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM product, program, or
service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However,
it is the user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, New York 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs

© Copyright IBM Corp. 1991, 2009 285

and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Mail Station P300
2455 South Road
Poughkeepsie, New York 12601-5400
U.S.A.
Attention: Information Request

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available
for it are provided by IBM under terms of the IBM Customer Agreement, IBM
International Program License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM
has not tested those products and cannot confirm the accuracy of performance,
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source language,
which illustrate programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply
reliability, serviceability, or function of these programs.

286 z/VM: CMS Pipelines User’s Guide

Programming Interface Information
This book primarily documents information that is NOT intended to be used as
Programming Interfaces of z/VM.

This book also documents intended Programming Interfaces that allow the customer
to write programs to obtain the services of z/VM. This information is identified where
it occurs, either by an introductory statement to a chapter or section or by the
following marking:

�PI�

<...Programming Interface information...>

�PI end�

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.shtml

Adobe is either a registered trademark or trademark of Adobe Systems Incorporated
in the United States, and/or other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Notices 287

http://www.ibm.com/legal/copytrade.shtml

288 z/VM: CMS Pipelines User’s Guide

Glossary

For a list of z/VM terms and their definitions, see z/VM: Glossary.

The z/VM glossary is also available through the online z/VM HELP Facility. For
example, to display the definition of the term “dedicated device”, issue the following
HELP command:
help glossary dedicated device

While you are in the glossary help file, you can do additional searches:

v To display the definition of a new term, type a new HELP command on the
command line:
help glossary newterm

This command opens a new help file inside the previous help file. You can repeat
this process many times. The status area in the lower right corner of the screen
shows how many help files you have open. To close the current file, press the
Quit key (PF3/F3). To exit from the HELP Facility, press the Return key (PF4/F4).

v To search for a word, phrase, or character string, type it on the command line
and press the Clocate key (PF5/F5). To find other occurrences, press the key
multiple times.

The Clocate function searches from the current location to the end of the file. It
does not wrap. To search the whole file, press the Top key (PF2/F2) to go to the
top of the file before using Clocate.

© Copyright IBM Corp. 1991, 2009 289

290 z/VM: CMS Pipelines User’s Guide

Bibliography

See the following publications for additional
information about z/VM. For abstracts of the z/VM
publications, see z/VM: General Information.

Where to Get z/VM Information
z/VM product information is available from the
following sources:

v z/VM Information Center at
publib.boulder.ibm.com/infocenter/zvm/v6r1/
index.jsp

v z/VM Internet Library at www.ibm.com/eserver/
zseries/zvm/library/

v IBM Publications Center at
www.elink.ibmlink.ibm.com/publications/servlet/
pbi.wss

v IBM Online Library: z/VM Collection on DVD,
SK5T-7054

z/VM Base Library

Overview
v z/VM: General Information, GC24-6193

v z/VM: Glossary, GC24-6195

v z/VM: License Information, GC24-6200

Installation, Migration, and
Service
v z/VM: Guide for Automated Installation and

Service, GC24-6197

v z/VM: Migration Guide, GC24-6201

v z/VM: Service Guide, GC24-6232

v z/VM: VMSES/E Introduction and Reference,
GC24-6243

Planning and Administration
v z/VM: CMS File Pool Planning, Administration,

and Operation, SC24-6167

v z/VM: CMS Planning and Administration,
SC24-6171

v z/VM: Connectivity, SC24-6174

v z/VM: CP Planning and Administration,
SC24-6178

v z/VM: Getting Started with Linux on System z,
SC24-6194

v z/VM: Group Control System, SC24-6196

v z/VM: I/O Configuration, SC24-6198

v z/VM: Running Guest Operating Systems,
SC24-6228

v z/VM: Saved Segments Planning and
Administration, SC24-6229

v z/VM: Secure Configuration Guide, SC24-6230

v z/VM: TCP/IP LDAP Administration Guide,
SC24-6236

v z/VM: TCP/IP Planning and Customization,
SC24-6238

v z/OS and z/VM: Hardware Configuration
Manager User’s Guide, SC33-7989

Customization and Tuning
v z/VM: CP Exit Customization, SC24-6176

v z/VM: Performance, SC24-6208

Operation and Use
v z/VM: CMS Commands and Utilities Reference,

SC24-6166

v z/VM: CMS Pipelines Reference, SC24-6169

v z/VM: CMS Pipelines User’s Guide, SC24-6170

v z/VM: CMS Primer, SC24-6172

v z/VM: CMS User’s Guide, SC24-6173

v z/VM: CP Commands and Utilities Reference,
SC24-6175

v z/VM: System Operation, SC24-6233

v z/VM: TCP/IP User’s Guide, SC24-6240

v z/VM: Virtual Machine Operation, SC24-6241

v z/VM: XEDIT Commands and Macros
Reference, SC24-6244

v z/VM: XEDIT User’s Guide, SC24-6245

v CMS/TSO Pipelines: Author’s Edition,
SL26-0018

Application Programming
v z/VM: CMS Application Development Guide,

SC24-6162

v z/VM: CMS Application Development Guide for
Assembler, SC24-6163

v z/VM: CMS Application Multitasking, SC24-6164

v z/VM: CMS Callable Services Reference,
SC24-6165

v z/VM: CMS Macros and Functions Reference,
SC24-6168

© Copyright IBM Corp. 1991, 2009 291

http://publib.boulder.ibm.com/infocenter/zvm/v6r1/index.jsp
http://publib.boulder.ibm.com/infocenter/zvm/v6r1/index.jsp
http://www.ibm.com/eserver/zseries/zvm/library/
http://www.ibm.com/eserver/zseries/zvm/library/
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss

v z/VM: CP Programming Services, SC24-6179

v z/VM: CPI Communications User’s Guide,
SC24-6180

v z/VM: Enterprise Systems Architecture/
Extended Configuration Principles of Operation,
SC24-6192

v z/VM: Language Environment User’s Guide,
SC24-6199

v z/VM: OpenExtensions Advanced Application
Programming Tools, SC24-6202

v z/VM: OpenExtensions Callable Services
Reference, SC24-6203

v z/VM: OpenExtensions Commands Reference,
SC24-6204

v z/VM: OpenExtensions POSIX Conformance
Document, GC24-6205

v z/VM: OpenExtensions User’s Guide,
SC24-6206

v z/VM: Program Management Binder for CMS,
SC24-6211

v z/VM: Reusable Server Kernel Programmer’s
Guide and Reference, SC24-6220

v z/VM: REXX/VM Reference, SC24-6221

v z/VM: REXX/VM User’s Guide, SC24-6222

v z/VM: Systems Management Application
Programming, SC24-6234

v z/VM: TCP/IP Programmer’s Reference,
SC24-6239

v Common Programming Interface
Communications Reference, SC26-4399

v Common Programming Interface Resource
Recovery Reference, SC31-6821

v z/OS: IBM Tivoli Directory Server Plug-in
Reference for z/OS, SA76-0148

v z/OS: Language Environment Concepts Guide,
SA22-7567

v z/OS: Language Environment Debugging
Guide, GA22-7560

v z/OS: Language Environment Programming
Guide, SA22-7561

v z/OS: Language Environment Programming
Reference, SA22-7562

v z/OS: Language Environment Run-Time
Messages, SA22-7566

v z/OS: Language Environment Writing ILC
Applications, SA22-7563

v z/OS MVS Program Management: Advanced
Facilities, SA22-7644

v z/OS MVS Program Management: User’s Guide
and Reference, SA22-7643

Diagnosis
v z/VM: CMS and REXX/VM Messages and

Codes, GC24-6161

v z/VM: CP Messages and Codes, GC24-6177

v z/VM: Diagnosis Guide, GC24-6187

v z/VM: Dump Viewing Facility, GC24-6191

v z/VM: Other Components Messages and
Codes, GC24-6207

v z/VM: TCP/IP Diagnosis Guide, GC24-6235

v z/VM: TCP/IP Messages and Codes,
GC24-6237

v z/VM: VM Dump Tool, GC24-6242

v z/OS and z/VM: Hardware Configuration
Definition Messages, SC33-7986

z/VM Facilities and Features

Data Facility Storage
Management Subsystem for VM
v z/VM: DFSMS/VM Customization, SC24-6181

v z/VM: DFSMS/VM Diagnosis Guide,
GC24-6182

v z/VM: DFSMS/VM Messages and Codes,
GC24-6183

v z/VM: DFSMS/VM Planning Guide, SC24-6184

v z/VM: DFSMS/VM Removable Media Services,
SC24-6185

v z/VM: DFSMS/VM Storage Administration,
SC24-6186

Directory Maintenance Facility for
z/VM
v z/VM: Directory Maintenance Facility

Commands Reference, SC24-6188

v z/VM: Directory Maintenance Facility Messages,
GC24-6189

v z/VM: Directory Maintenance Facility Tailoring
and Administration Guide, SC24-6190

Open Systems Adapter/Support
Facility
v System z10, System z9 and eServer zSeries:

Open Systems Adapter-Express Customer’s
Guide and Reference, SA22-7935

v System z9 and eServer zSeries 890 and 990:
Open Systems Adapter-Express Integrated
Console Controller User’s Guide, SA22-7990

292 z/VM: CMS Pipelines User’s Guide

v System z: Open Systems Adapter-Express
Integrated Console Controller 3215 Support,
SA23-2247

Performance Toolkit for VM™

v z/VM: Performance Toolkit Guide, SC24-6209

v z/VM: Performance Toolkit Reference,
SC24-6210

RACF® Security Server for z/VM
v z/VM: RACF Security Server Auditor’s Guide,

SC24-6212

v z/VM: RACF Security Server Command
Language Reference, SC24-6213

v z/VM: RACF Security Server Diagnosis Guide,
GC24-6214

v z/VM: RACF Security Server General User’s
Guide, SC24-6215

v z/VM: RACF Security Server Macros and
Interfaces, SC24-6216

v z/VM: RACF Security Server Messages and
Codes, GC24-6217

v z/VM: RACF Security Server Security
Administrator’s Guide, SC24-6218

v z/VM: RACF Security Server System
Programmer’s Guide, SC24-6219

v z/VM: Security Server RACROUTE Macro
Reference, SC24-6231

Remote Spooling
Communications Subsystem
Networking for z/VM
v z/VM: RSCS Networking Diagnosis, GC24-6223

v z/VM: RSCS Networking Exit Customization,
SC24-6224

v z/VM: RSCS Networking Messages and Codes,
GC24-6225

v z/VM: RSCS Networking Operation and Use,
SC24-6226

v z/VM: RSCS Networking Planning and
Configuration, SC24-6227

v Network Job Entry: Formats and Protocols,
SA22-7539

Prerequisite Products

Device Support Facilities
v Device Support Facilities: User’s Guide and

Reference, GC35-0033

Environmental Record Editing
and Printing Program
v Environmental Record Editing and Printing

Program (EREP): Reference, GC35-0152

v Environmental Record Editing and Printing
Program (EREP): User’s Guide, GC35-0151

Additional Publications
IBM ESA/370 Reference Summary,
GX20-0406

Bibliography 293

294 z/VM: CMS Pipelines User’s Guide

Index

Special characters
_ indicating blanks in searches 22
, as a delimiter 19
* (asterisk)

JOIN stage 31
*: as a connector 94, 97, 144
*MONITOR system service, CP

writing lines from 56
*MSG CP system service 162
*MSG operand of STARMSG stage 162
*MSGALL CP system service 162
*MSGALL operand of STARMSG stage 162
> (Replace or Create a CMS File) stage

description 62
>> (Append to or Create a CMS File) stage

description 63
< (Read a CMS File) stage

description 62
| stage separator 5
|| as a REXX concatenation symbol 9
⁄ as a delimiter 18

A
accessing exec variables 65
accessing XEDIT files 70
ADD REXX example user-written stage 91
adding a pipeline 145
adding to a file 63
ADDPIPE pipeline subcommand

description 145
alignment operands of SPECS stage 42
altering the content of a record 27, 34, 47
APPEND stage 71
appending data to a file 63
arbitrary character, specifying 21
arguments, processing 92
arranging

record contents 35
records 49

arrays, accessing 65
ASA carriage control

converting from 174
converting to 174

ASATOMC stage 174
Assembler language usage in user-written stages 75
assembler macro, CMS Pipelines

getting HELP for 15
summary of 265

asterisk (*)
JOIN stage 31

asynchronous command 161
ASYNCMS REXX example 161
AUTHOR REXX example user-written stage 90, 92
avoiding a stall 123, 131

B
B2C operand

SPECS stage 44
BACKUP REXX example (shows ADDPIPE) 147
blank

as arbitrary characters 21
as pad characters in SPECS 37
indicating in searches 22
specifying in the XLATE stage 29
stripping from records 33

blank record, writing with the OUTPUT
subcommand 94

block descriptor word 184
block format

CMS variable 183
fixed 182, 190
IEBCOPY unloaded data set 188
line-end character 185
MVS variable 184
packed 189
STARMSG output records 162

BLOCK stage
CMS operand 184
FIXED operand 182
LINEND operand 185
NETDATA operand 187
VBS operand 185

blocked stage 134
blocking and deblocking records 181, 192
book, reference 16
BUFFER stage

description 52
fixing stalls with 132

buffering records
BUFFER stage 52
SORT stage 8, 49

building filter packages 226
built-in stage

See stage, CMS Pipelines built-in
BYTES operand

COUNT stage 48
bytes, counting the number of 48

C
C2B operand

SPECS stage 44
C2X operand

SPECS stage 43
CALLPIPE pipeline subcommand

using multiple input and output streams 144
writing subroutine pipelines 94

CANDELAY example exec 137
capital letters, translating records to 27
card reader, virtual

reading data from 176

© Copyright IBM Corp. 1991, 2009 295

carriage control
ASA 174
machine 174

case insensitivity 17
case sensitivity 17
case, translating to upper or lower 27
catenating records 30
CENTER operand

SPECS stage 42
CHANGE stage

description 34
changes in DB2 Server for VM, committing 197
changing a file 62
changing the contents of records 34
changing the map of the pipeline 146
channel command code 173
character

counting the number of 48
translating to uppercase or lowercase 27

character, arbitrary 21
characteristics of the virtual reader 177
CHKAUTH REXX example user-written stage 169
CHKFILE REXX example user-written stage 170
CHOP stage

description 32
chopping records 32
CMS command

executing from a user-written stage 92
issuing from a pipeline 53

CMS operand
BLOCK stage 184
DEBLOCK stage 184

CMS Pipelines
migrating to 267
summary of 259
using SQL in 193, 199

CMS Pipelines environment for user-written stages 78
CMS stage

description 53
CMS variable format blocks 183
code, channel command 173
column number, negative 46
column range

for the CHANGE stage 34
for the NLOCATE stage 21
for the SORT stage 50
for the SPECS stage 36
for the XLATE stage 28

column reference, relative 46
combining inputs from device drivers 71
combining records 30
combining streams 117, 120
COMBO REXX example (shows CALLPIPE) 102
comma (,) as delimiters 19
command code, channel 173
COMMAND stage

description 54
command, asynchronous 161
command, immediate 160
command, issuing from a pipeline 53
COMMIT operand of SQL 197

committing DB2 Server for VM changes 197
computing the number of characters, words, or

records 48
computing the number of duplicate records 51
concatenating records 30
concatenation symbol in REXX (||) 9
concepts for user-written stages 75
concurrent SQL stages, using 198
connecting records 30
connecting streams 110
connection variations for ADDPIPE 145
connections, stream

restoring a connection stacked with ADDPIPE
pipeline subcommand 149

severing 149, 153
stacking connections with ADDPIE pipeline

subcommand 149
connections, system services

with host command interfaces 56
connector

format of 94, 97, 144
using with ADDPIPE 145
using with CALLPIPE 94, 97

CONSOLE stage
description 59

console, working with 59
consuming records 134
contents of records

changing 34
rearranging 35

continuation character, using 9
continuing pipelines on several exec lines 9
controlling messages from tracing 236
conversion operands of SPECS stage 43
converting ASA carriage control to machine carriage

control 174
converting DB2 Server for VM fields with SPECS 196
converting machine carriage control to ASA carriage

control 174
converting records to uppercase or lowercase

characters 27
converting to CMS Pipelines 267
COUNT operand

SORT stage 51
COUNT stage

using with primary output stream 48
using with secondary output stream 124

counting
characters and words 48
duplicate records 51
records 48

COUNTLNS operand 269
COUNTWDS REXX example subroutine pipeline 96
CP *MONITOR system service 56
CP command

executing from a user-written stage 92
issuing from a pipeline 53
reading spool files 177

CP Message system service 162
CP stage

description 54

296 z/VM: CMS Pipelines User’s Guide

CPASIS operand 269
creating a file 62
creating a network client 201
creating a network server 207
creating a simple server 210
creating an DB2 Server for VM table 194
creating streams 110
currently selected stream 144

D
DB2 Server for VM

getting help information for 198
DB2 Server for VM changes, committing 197
DB2 Server for VM data, converting 196
DB2 Server for VM statements, describing 194
DB2 Server for VM table

committing changes made to 197
creating 194
inserting data into 194
querying 195
rolling back changes made to 197

DB2 Server for VM units of work 197
DB2 Server for VM, using in CMS Pipelines 193, 199
DEBLOCK stage

CMS operand 184
FIXED operand 183
LINEND operand 186
TEXTUNIT operand 187
V operand 185

deblocked variable records 184
deblocking and blocking records 181, 192
DEBNET REXX example of deblocking NETDATA

records 188
debugging pipelines 229, 238
DEC2PACK REXX example for converting DB2 Server

for VM data 197
declaring labels 110
defining labels 110
defining streams 110
defining the layout of output records 35
DELAY example exec 138
DELAY stage

description 155
delaying records 134, 155
delimiter

between stages 4
for the LOCATE stage 18

DESCENDING operand
SORT stage 50

DESCRIBE operand
SQL stage 194

describing DB2 Server for VM statements 194
detail record 128
DETAILS operand of LOOKUP 128
device driver

combining inputs from 71
description 6, 59, 73
getting HELP for 15

dialogs, reading 12
discarding duplicate records 23, 51

discarding unique records 24
disconnected streams, handling 82
disconnecting streams 149, 153
DISKBACK stage

See FILEBACK stage
DISKFAST stage

See FILEFAST stage
DISKRAND stage

See FILERAND stage
DISKSLOW stage

See FILESLOW stage
DISKUPDATE stage

See FILEUPDATE stage
dispatcher, pipeline 78
dispatching stages added by ADDPIPE 148
displaying all nonzero return codes 238
displaying pipeline messages 237
dividing records 30
DOIT example exec for DELAY 159
DROP stage 26
dumps from pipeline stalls 131
DUPLF example exec for UNIQUE MULTIPLE 24
duplicate records

counting 51
discarding 23, 51

DUPLICATE stage
description 48

duplicating records 48

E
ECHOC REXX user-written stage example 203, 205,

206
ECHOD REXX user-written stage example 211, 217
echoing lines on the console 59
ECHOS EXEC example 210
ECHOSND EXEC example 220
electronic mail spool file format 176
end character

defining on the PIPE command 109
specifying on the PIPE command 109

end-of-command processing for pipelines 81
ENDCHAR option

PIPE command 109
ending a pipeline 81
environment for user-written stages 78
environments supported 270
erasing duplicate records 23, 51
erasing unique records 24
errors, dispatcher handling of 82
event-driven pipelines 155, 172
EVENTS operand of STARMONITOR stage 56
EVERY REXX example (shows DELAY) 158
example of

exec
CANDELAY (shows delayed commands) 137
DELAY (shows delayed commands) 138
DOIT (shows DELAY) 159
DUPLF (shows UNIQUE MULTIPLE) 25
ECHOS EXEC 210
ECHOSND EXEC 220

Index 297

example of (continued)
exec (continued)

FGET (example requester) 164
LATER (shows DELAY) 156
LATER2 (shows DELAY) 157
LFD (shows FANINANY) 118
LOOKSTR (shows LOOKUP) 129
MYSERV (example server) 166
NODELAY (shows commands not delayed) 135
OVERLAY (shows OVERLAY) 122
RPTMSG (shows IMMCMD) 161
RPTMSG1 (shows asynchronous

commands) 162
SELECT (shows SPECS SELECT) 123
SQLFORM (formats DB2 Server for VM query

results) 195
STAGESEP (displays stage separator) 5
TIME (shows NAME option) 237
WORDUSE (shows COUNT) 125

file server 164, 172
requester 164
user-written stage

ADD REXX 91
ASYNCMS REXX (shows asynchronous

commands) 161
AUTHOR REXX 90, 92
BACKUP REXX (shows ADDPIPE pipeline

subcommand) 147
CHKAUTH REXX 169
CHKFILE REXX 170
COMBO REXX (shows CALLPIPE pipeline

subcommand) 102
COUNTWDS REXX (example subroutine

pipeline) 96
DEBNET REXX (shows DEBLOCK

NETDATA) 188
DEC2PACK REXX (converts DB2 Server for VM

data) 197
ECHOC REXX 203, 205, 206
ECHOD REXX 211, 217
EVERY REXX (shows DELAY stage) 158
FGETMSG REXX 168
FILEDATE REXX (shows CALLPIPE pipeline

subcommand) 103
FIXED REXX (shows CALLPIPE pipeline

subcommand) 94
GENERIC REXX 166
HEXTYPE REXX 213
HOLD REXX 84
LOCDEPT REXX 144
LOGIT REXX (shows CALLPIPE pipeline

subcommand) 97
MYFANOUT REXX 142, 143
OSPDS REXX 188
PLAIN REXX (reads punch files) 179
REQUEST REXX 168
REVIT REXX 79
SECPARM REXX (shows ADDPIPE pipeline

subcommand) 148
SEELOG REXX (shows CALLPIPE pipeline

subcommand) 98, 99, 100

example of (continued)
user-written stage (continued)

SQLSELEC REXX for formatting DB2 Server for
VM queries 193

TCPDEALT REXX 221
TITLE REXX 93
TRACER REXX (shows ADDPIPE pipeline

subcommand) 150
TRACING REXX (shows CALLPIPE pipeline

subcommand) 103
UENG REXX (shows CALLPIPE pipeline

subcommand) 100
VALIDATE REXX (shows LOOKUP stage) 130

XEDIT macro
SC XEDIT macro for aligning comments 270
SCM XEDIT macro for aligning comments 270
SNIP XEDIT macro 71
STATE XEDIT (shows SUBCOM stage) 56
TRAILER XEDIT macro 71
WORDLIST XEDIT (shows XEDIT stage) 248

EXCLUSIVE operand of STARMONITOR stage 57
exec

accessing variables of 65
using pipelines in 8

exec, example
CANDELAY (shows delayed commands) 137
DELAY (shows delayed commands) 138
DOIT (shows DELAY) 159
DUPLF (shows UNIQUE MULTIPLE) 25
ECHOS EXEC 210
ECHOSND EXEC 220
FGET (example requester) 164
LATER (shows DELAY) 156
LATER2 (shows DELAY) 157
LFD (shows FANINANY) 118
LOOKSTR (shows LOOKUP) 129
MYSERV (example server) 166
NODELAY (shows commands not delayed) 135
OVERLAY (shows OVERLAY) 122
RPTMSG (shows IMMCMD) 161
RPTMSG1 (shows asynchronous commands) 162
SELECT (shows SPECS SELECT) 123
SQLFORM (formats DB2 Server for VM query

results) 195
STAGESEP (displays stage separator) 5
TIME (shows NAME option) 237
WORDUSE (shows COUNT) 125

EXECIO command
using the PIPE command as an alternative 10

EXECUTE operand of SQL 194
executing commands from a pipeline 53
executing CP and CMS commands from a stage 92
executing records as commands 55
expanding records 32

F
FANIN stage

description 120
FANINANY stage

description 117

298 z/VM: CMS Pipelines User’s Guide

FANINANY stage (continued)
fixing stalls with 132

FANOUT stage
description 115

FBLOCK stage
creating fixed-format records 190

FGET example exec 164
FGETMSG REXX example user-written stage 168
field

converting with SPECS 196
moving within records 35

FIELDS operand
SPECS stage 38

fields, range of 39
FIFO operand

COUNT stage 269
file

appending data to 63
changing 62
combining two 72
creating 62
getting facts about 64
reading data from 62
reading from a file being edited with XEDIT 70
reading from a specified record 61
reading random records from a file 61
writing data to 62
writing to a file being edited with XEDIT 70

file server example 164, 172
file, tracing to 231
FILEBACK stage

description 61
synonym for DISKBACK 269

FILEDATE REXX example (shows CALLPIPE) 103
FILEFAST stage

description 63
synonym for DISKFAST 269

FILELIST display, entering PIPE commands from 104
FILERAND stage

description 61
synonym for DISKRAND 269

FILESLOW stage
description 61
synonym for DISKSLOW 269

FILEUPDATE stage
synonym for DISKUPDATE 269

fill characters used in SPECS 37
filling records 32
filter

description 7
getting HELP for 15
using 17, 52

filter package
building 226
loading 225, 228
names of 225
PIPLOCF 226
PIPPTFF 225
PIPSYSF 225
PIPUSERF 226
replaced execs 228

filter package (continued)
search order of 226
sharing 225

FIND stage
description 21

finding strings in records 17, 25
FIXED operand

> stage 63
BLOCK stage 182
DEBLOCK stage 183

FIXED REXX example (shows CALLPIPE) 94
fixed-format blocks, blocking and deblocking 182, 190
fixed-length record

writing 63
fixing stalls 131
folding records to uppercase 27
format

of connectors 94, 97, 144
format of records

CMS variable 183
fixed 182, 190
IEBCOPY unloaded data set 188
line-end character 185
MVS variable 184
packed 189
STARMSG output records 162

formatting data on records 35
formatting queries using SQLSELEC REXX 193
FRLABEL stage

description 22

G
GCS environment 270
GENERIC REXX example user-written stage 166
getting facts about a file 64

H
handling multiple clients 218
HELP command of CMS 15
HELP component for CMS Pipelines 15
HELP for pipelines 15
help information, obtaining

DB2 Server for VM 198
HELP stage

SQL operand 198
using 15

HELP, online 15
hexadecimal values

specifying on the XLATE stage 29
HEXTYPE REXX user-written stage example 213
HMSG immediate command handler 163
HOLD REXX example user-written stage 84
HOLD REXX, fixing stalls with 133
host command interface

description 53
hours, specifying with DELAY stage 157
how a pipeline ends 81
how a pipeline runs 78
how stages use multiple streams 107

Index 299

I
identifying streams 118
IEBCOPY unloaded data set 188
ignoring characters in searches 21
IMMCMD stage

description 160
immediate command

setting up an immediate command handler from a
pipeline 160

writing immediate command arguments to a
pipeline 161

improving performance 105, 225
indicator word 195
input connector 94, 97, 144, 145
input operand of SPECS 36
input range

for the LOCATE stage 19
input stream

description 4
reading records from 88

input stream, primary 107
input stream, secondary 107
inserting data into an DB2 Server for VM table 194
inserting stages in pipelines 95, 151
interacting with CMS Pipelines from a stage 76
interactive dialogs, reading 12
interval, specifying with DELAY stage 157
ISSUEMSG stage 269
issuing CMS commands from a pipeline 53
issuing CP commands from a pipeline 53
issuing XEDIT messages during an XEDIT session 69

J
JOIN stage

description 30
joining records 30
joining streams 117, 120

L
label

definition 110
label definition

description 110
label reference

description 110
LAST operand

of DROP 26
of TAKE 26

LATER example exec for DELAY 156
LATER2 example exec for DELAY 157
layout of output records, defining 35
leading character, removing 33
LEFT operand

SPECS stage 42
length, selecting records by 20, 21
LEVEL operand

QUERY stage 268
LFD example exec for FANINANY 118

LIFO operand on the COUNT stage
COUNT stage 269

limiting the range of CHANGE 34
limiting the range of LOCATE 19
limiting the range of XLATE 28
line

See record
line-end character

example 185
specifying for BLOCK 185
specifying for DEBLOCK 186
using 182

line-end character format, blocking and deblocking 185
LINEND operand

BLOCK stage 185
DEBLOCK stage 186

LINES operand
COUNT stage 48

linking records 30
LISTERR option

PIPE command 238
LISTMRG example exec for MERGE 127
LITERAL stage

description 18, 60
literals, writing to a pipeline 18, 60
literals, writing with SPECS 39
load module for a filter package, creating 227
loading data into an DB2 Server for VM table 194
loading filter packages 225
LOCATE stage

description 18
OR operation 117

LOCDEPT REXX example user-written stage 144
LOGIT REXX example (shows CALLPIPE) 97
long-running PIPE command 155, 172
looking for strings in records 17, 25, 129
LOOKUP stage

description 127
lowercase characters, translating records to 27

M
machine carriage control

converting from 174
converting to 174

machine, service 155
macro

assembler
summary of 265

macro, XEDIT example
SC XEDIT macro for aligning comments 270
SCM XEDIT macro for aligning comments 270
SNIP XEDIT macro 71
STATE XEDIT (shows SUBCOM stage) 56
TRAILER XEDIT macro 71
WORDLIST XEDIT (shows XEDIT stage) 248

mail, electronic, spool file format for 176
maintaining relative order of records 134
manipulating output records 35
manual, reference 16
map of pipeline, redrawing 146

300 z/VM: CMS Pipelines User’s Guide

mapping the contents of records 35
master record 128
MAXSTREAM pipeline subcommand

description 142
MCTOASA stage

description 175
MERGE stage

description 126
message

controlling tracing messages 236
displaying a list of CMS Pipelines messages

issued 237
issuing XEDIT messages during an XEDIT

session 69
message examples, notation used in 14
message help 16
message service, CP

writing lines from 162
migrating to CMS Pipelines 267
minutes, specifying with DELAY stage 157
module for a filter package, creating 227
monitor data 176
moving fields within records 35
MULTIPLE operand

UNIQUE stage 24
multiple pipelines, writing 109
multiple streams, using with the SQL stage 197
Multiple Virtual Storage (MVS)

migration considerations 270
variable-format records 184

multistream pipeline
pipeline subcommands for 141, 153
stages for 115, 131
using 107, 153

MVS (Multiple Virtual Storage)
See Multiple Virtual Storage (MVS)

MYFANOUT REXX example user-written stage 142,
143

MYSERV example exec 166

N
NAME option

PIPE command 237
names for streams 119
names of filter package execs 228
names of filter packages 225
naming pipelines 237
negative column number 46
negative locate 20
NETDATA format 187
NETDATA operand on BLOCK and DEBLOCK

BLOCK stage 187
DEBLOCK stage 188

NEXT operand
SPECS stage 42

NEXTWORD operand
SPECS stage 42

NFIND (NOTFIND) stage
description 21

NLOCATE (NOTLOCATE) stage
description 20

NOCOMMIT operand
SQL stage 197

NODELAY example exec 135
NOINDICATORS operand

SQL stage 195
NOMSGLEVEL option 236
NONULLS option 269
not locate 20
notation used in message and response examples 14
nucleus extension, load a filter package as 225
NULLS option 269
number of a stage 90
number of characters, words, or records, counting 48
number of duplicate records, counting 51
numbers for streams 119

O
online HELP Facility, using 15
operands, processing 92
operating environments supported 270
option

specifying on the PIPE command 8
OR function for LOCATE 117
order of records

maintaining 134
predicting 135

ordering records 49
OSPDS REXX sample program 188
output connector 94, 97, 144, 145
output operand of SPECS 36
OUTPUT pipeline subcommand

description 88
examples 84

output stream
definition 4
writing records to 88

output stream, primary 107
output stream, secondary 107
OVERLAY example exec for OVERLAY stage 122
OVERLAY stage

description 121
overlaying data 41

P
PACK stage

description 189
packed records, deblocking 189
packing records 189
pad characters used in SPECS 37
PAD operand

SPECS stage 168
PAD stage

description 32
padding records 32
parentheses () as used in the CHANGE stage 35
peeking at a record 88
PEEKTO pipeline subcommand 88, 101

Index 301

performance, improving 105, 225
PIPDUMP listing file 131
PIPE command

debugging 229, 238
description 4
displaying messages from 237
ENDCHAR option 109
entering on FILELIST display 104
LISTERR option 238
NAME option 237
NOMSGLEVEL option 236
specifying options on 8
STAGESEP option 8
TRACE option 230
tracing execution of stages on 229

PIPE component of HELP 15
PIPE HELP component 15
pipeline

adding 145
continuing on several exec lines 9
debugging 229, 238
description 1
displaying messages from 237
event-driven 155, 172
HELP for 15
how records are processed by 8, 78
in execs 8
inserting stages into 95, 151
multistream 107, 153
naming 237
preserving 9
return codes from 11
stalling of 131
termination of 81
tracing 229
using labels within 110
using with TCP/IP 199, 225
virtual storage used by 8

pipeline basics 1, 16
pipeline subcommand, CMS Pipelines

ADDPIPE 145
CALLPIPE 94, 144
for multistream pipelines 141, 153
getting HELP for 15
MAXSTREAM 142
OUTPUT 84, 88
PEEKTO 88, 101
READTO 84, 88
SELECT 141
SEVER 153
SHORT 89
STAGENUM 90
STREAMNUM 144
summary of 264

pipeline, using DB2 Server for VM in 193, 199
PIPGFMOD EXEC for building a filter package 227
PIPGFTXT EXEC for building filter packages 227
PIPLOCF filter package 226
PIPMOD STOP command

terminating CONSOLE 157
PIPPTFF filter package 225

PIPSYSF filter package 225
PIPUSERF filter package 226
PLAIN REXX example for reading punch files 179
predicting relative record order 135
PREFACE stage 72
preserving a pipeline 9
primary input stream

multistream pipeline 107
primary output stream

multistream pipeline 107
printer carriage control 174
printer, virtual

reading from 178
writing records to 174

printing a file 174
printing a file without carriage control 175
PRINTMC stage

description 174
processing arguments in user-written stages 92
punch files, reading 178
PUNCH stage

description 173
punch, virtual

writing records to 173
punching a file 173

Q
QSAM stage 262
queries, describing 194
QUERY stage

output differences 268
querying DB2 Server for VM tables 195

R
range

for the CHANGE stage 34
for the NLOCATE stage 21
for the SORT stage 50
for the SPECS stage 36
for the XLATE stage 28

RC variable 11
RDRLIST display, entering PIPE commands from 19
READ operand

SPECS stage 44
reader file, reading 176
READER stage

description 176
reading exec variables 65, 68
reading from a file 62
reading from a file being edited with XEDIT 70
reading from the console 60
reading input stream records 88
reading interactive dialogs 12
reading lines with SPECS READ operand 44
reading printer files 178
reading punch files 178
reading spool files 176
READTO pipeline subcommand

description 88

302 z/VM: CMS Pipelines User’s Guide

READTO pipeline subcommand (continued)
examples 84

rearranging the contents of records 35
RECNO operand

SPECS stage 41
reconnecting streams 149
record

blocking 181, 192
buffering 8, 52
changing 27, 34, 47
chopping 32
consuming 134
counting the number of 48
deblocking 181, 192
delaying 134, 155
description 2
discarding duplicates 23, 51
discarding unique 24
duplicating 48
executing as commands 55, 232
expanding 32
joining 30
looking at end of 47
maintaining relative order 134
overlaying 121
packing 189
padding 32
peeking at 88
predicting relative order 135
reading from a file 88
rearranging the contents of 35
removing

blank lines 20
leading characters 33
trailing characters 33

selecting
by content 17, 25
by length 20, 21
by position 25, 27

sorting 49
splitting 30
translating 27
unpacking 189
writing to a file 18, 88

record descriptor word 182, 183, 184
record format

CMS variable 183
fixed 182, 190
IEBCOPY unloaded data set 188
line-end character 185
MVS variable 184
packed 189
STARMSG output records 162

records that span blocks 191
redrawing a pipeline map 146
reference (for LOOKUP) 128
reference book 16
reference manual 16
referencing labels 110
registers, using in Assembler stages 77
relative column reference 46

remapping the contents of records 35
Remote Spooling Communications Subsystem (RSCS)

machine 166
removing blank lines 20
removing duplicate records 23, 51
removing leading characters 33
removing trailing characters 33
removing unique records 24
replaced filter package execs 228
replacing one string with another 34
REQUEST REXX example user-written stage 168
requester example 164
response examples, notation used in 14
restoring connections 149
return code

dispatcher handling of 82
displaying all nonzero 238
from pipelines 11
use of, in user-written stages 78

return code 12, meaning of 82
reusing sequences of stages 96
REVIT REXX example user-written stage 79
REXX concatenation symbol (||) 9
REXX continuation character 9
REXX language usage in user-written stages 75
REXX stage

running your own stage 87
REXX variable

accessing 65
putting command results into 54

REXXES file type, use of 226
RIGHT operand

SPECS stage 42
ROLLBACK operand of SQL 197
rolling back changes to DB2 Server for VM tables 197
RPTMSG example exec for IMMCMD 161
RPTMSG1 example exec using ASYNCMS 162
RSCS (Remote Spooling Communications Subsystem)

machine
See Remote Spooling Communications Subsystem

(RSCS) machine
running commands from a pipeline 53
running the example file server 172
RUNPIPE stage 231

S
sample exec

CANDELAY (shows delayed commands) 137
DELAY (shows delayed commands) 138
DOIT (shows DELAY) 159
DUPLF (shows UNIQUE MULTIPLE) 25
ECHOS EXEC 210
ECHOSND EXEC 220
FGET (example requester) 164
LATER (shows DELAY) 156
LATER2 (shows DELAY) 157
LFD (shows FANINANY) 118
LOOKSTR (shows LOOKUP) 129
MYSERV (example server) 166
NODELAY (shows commands not delayed) 135

Index 303

sample exec (continued)
OVERLAY (shows OVERLAY) 122
RPTMSG (shows IMMCMD) 161
RPTMSG1 (shows asynchronous commands) 162
SELECT (shows SPECS SELECT) 123
SQLFORM (formats DB2 Server for VM query

results) 195
STAGESEP (displays stage separator) 5
TIME (shows NAME option) 237
WORDUSE (shows COUNT) 125

SAMPLES operand of STARMONITOR stage 56
SC XEDIT macro for aligning commands 270
scanner, pipeline 78
SCM XEDIT macro for aligning commands 270
screen, displaying results on 59
search order for filter packages 226
searching for strings in records 17, 25
secondary input stream

connecting to 112, 113
description 107

secondary inputs, connecting to 112, 113
secondary output stream

connecting to 111, 113
description 107

secondary outputs, connecting to 111, 113
seconds, specifying with DELAY stage 157
SECPARM REXX example (shows ADDPIPE) 148
SEELOG REXX example (shows CALLPIPE) 98, 99,

100
segment descriptor word 184
segments of records 184
SELECT ANYINPUT stage 269
SELECT example exec for SPECS 123
SELECT operand

SPECS stage 122
SELECT pipeline subcommand

description 141
selecting records by content 17, 25
selecting records by position 25, 27
selecting the current stream 141
sending records to a server 203
server example 164, 172
service virtual machine 155
SEVER pipeline subcommand

description 153
INPUT operand 149

severing streams 149, 153
SHARED operand of STARMONITOR stage 56
shared segment usage 105
sharing filter packages 225
SHORT pipeline subcommand

description 89
slashes (/) as delimiters 18
small letters, translating records to 27
SMSG requests, processing 163
snapshots of data, as used in debugging 236
SNIP XEDIT macro 71
SORT stage

description 49
fixing stalls with 133

SORT UNIQUE stage as compared to UNIQUE
stage 23

sorting pipeline records 49
spacing data on records 37
spanned blocks 181
spanned records 191
specifying intervals with DELAY stage 157
specifying options on the PIPE command 8
specifying ranges in SORT 50
specifying ranges in SPECS 36
specifying ranges of fields 39
specifying ranges of words 38
SPECS stage

converting DB2 Server for VM data with 196
description 35
with multistream pipelines 122

SPILL setting in XEDIT 70
SPLIT stage

description 30
splitting records 30
spool file

printing 174
punching 173
reading 176

SQL stage
description 193

SQLFORM example exec 195
SQLSELEC REXX example for formatting DB2 Server

for VM queries 193
STACK operand on the COUNT stage 269
stage

inserting into pipelines 95, 151
stage example, user-written

ADD REXX 91
ASYNCMS REXX (shows asynchronous

commands) 161
AUTHOR REXX 90, 92
BACKUP REXX (shows ADDPIPE pipeline

subcommand) 147
CHKAUTH REXX 169
CHKFILE REXX 170
COMBO REXX (shows CALLPIPE pipeline

subcommand) 102
COUNTWDS REXX (example subroutine

pipeline) 96
DEBNET REXX (shows DEBLOCK NETDATA) 188
DEC2PACK REXX (converts DB2 Server for VM

data) 197
ECHOC REXX 203, 205, 206
ECHOD REXX 211, 217
EVERY REXX (shows DELAY stage) 158
FGETMSG REXX 168
FIXED REXX (shows CALLPIPE pipeline

subcommand) 94
GENERIC REXX 166
HEXTYPE REXX 213
HOLD REXX 84
LOCDEPT REXX 144
LOGIT REXX (shows CALLPIPE pipeline

subcommand) 97
MYFANOUT REXX 142, 143

304 z/VM: CMS Pipelines User’s Guide

stage example, user-written (continued)
OSPDS REXX 188
PLAIN REXX (reads punch files) 179
REQUEST REXX 168
REVIT REXX 79
SECPARM REXX (shows ADDPIPE pipeline

subcommand) 148
SEELOG REXX (shows CALLPIPE pipeline

subcommand) 98, 99, 100
SQLSELEC REXX for formatting SQL queries 193
TCPDEALT REXX 221
TITLE REXX 93
TRACER REXX (shows ADDPIPE pipeline

subcommand) 150
TRACING REXX (shows CALLPIPE pipeline

subcommand) 103
UENG REXX (shows CALLPIPE pipeline

subcommand) 100
VALIDATE REXX (shows LOOKUP stage) 130

stage number 90
stage separator 4
stage, CMS Pipelines built-in

> (Replace or Create a CMS File) 62
>> (Append to or Create a CMS File) 63
< (Read a CMS file) 62
See also user-written stage
APPEND 71
ASATOMC 174
BLOCK 182, 184, 185, 187
BUFFER 52
CHANGE 34
CHOP 32
CMS 53
COMMAND 54
CONSOLE 59
COUNT 48, 124
CP 54
DEBLOCK 183, 184, 185, 186, 187
DELAY 155
description 1, 2
DISKBACK 269
DISKFAST 269
DISKRAND 269
DISKSLOW 269
DISKUPDATE 269
dispatching of 78
DROP 26
DUPLICATE 48
FANIN 120
FANINANY 117
FANOUT 115
FBLOCK 190
FILEBACK 269
FILEFAST 63, 269
FILERAND 269
FILESLOW 269
FILEUPDATE 269
FIND 21
for event-driven pipelines 155
FRLABEL 22
getting HELP for 15

stage, CMS Pipelines built-in (continued)
HELP 15
IMMCMD 160
ISSUEMSG 269
JOIN 30
LITERAL 18, 60
LOCATE 18
LOOKUP 127
MCTOASA 175
MERGE 126
NFIND 21
NLOCATE 20
OVERLAY 121
PACK 189
PAD 32
PIPCMD 262
PREFACE 72
PRINTMC 174
PUNCH 173
READER 176
REXX 87
RUNPIPE 231
SORT 49
SPECS 35, 122
SPLIT 30
SQL 193
STARMONITOR 56
STARMSG 162
STATE 64
STATEW 64
STEM 65
storing sequences of 96
STRIP 33
SUBCOM 55
SYNCHRONISE 269
SYNCHRONIZE 269
TAKE 25
TCPCLIENT 201
TCPDATA 209
TCPLISTEN 208
TOKENISE 269
TOKENIZE 269
TOLABEL 22
tracing 235
TRANSLATE 269
UNIQUE 23
UNPACK 189
URO 173, 174
using multiple streams of 107
VAR 68
XEDIT 70
XLATE 22, 27, 269
XMSG 69

STAGENUM pipeline subcommand 90
STAGESEP example exec to display stage

separator 5
STAGESEP option of the PIPE command 8
stall, pipeline 131
STARMONITOR stage

description 56

Index 305

STARMSG stage
description 162

STATE example XEDIT macro for SUBCOM 56
STATE stage

description 64
STATEW stage

description 64
STEM stage

description 65
stem variables, accessing 65
STOP operand on PRINTMC, PUNCH, and URO 269
STOP option on PIPE, ADDPIPE, and CALLPIPE 269
stopping a client/server conversation 215
stopping event-driven pipelines 157, 160
stopping long-running pipelines 157, 160
storing sequences of stages 96
stream

combining 117, 120
connecting 110
copying 115
defining 110
description 4
input 4
multiple 107, 153
names for 119
numbers for 119
output 4
primary 107
reconnecting 149
secondary 107
selecting 141
severing 153
tertiary 116
testing for existence of 144

STREAMNUM pipeline subcommand 144
string

changing 34
continuing 9
searching for 17, 25
writing to a pipeline 60

STRIP stage
description 33

stripping leading or trailing characters 33
SUBCOM stage

description 55
subcommand

pipeline
ADDPIPE 145
CALLPIPE 94, 144
for multistream pipelines 141, 153
MAXSTREAM 142
OUTPUT 84, 88
PEEKTO 88, 101
READTO 84, 88
SELECT 141
SEVER 153
SHORT 89
STAGENUM 90
STREAMNUM 144
summary of 264

subcommand environment
using 55

subroutine pipeline
definition 12
invoking with CALLPIPE 94, 144

substituting one string for another 34
summary of assembler macros 265
summary of CMS Pipelines 259
summary of pipeline subcommands 264
suppressing indicator words 195
suppressing trace messages 236
switching streams 141
SYNCHRONISE stage 269
SYNCHRONIZE stage

synonym for SYNCHRONISE 269
syntax diagrams, how to read 12
system services

connecting 56

T
table, DB2 Server for VM

committing changes made to 197
creating 194
inserting data into 194
querying 195
rolling back changes made to 197

TAKE stage
description 25

taking snapshots of data 236
tallying characters, words, and records 48
tallying the number of duplicate records 51
TCP/IP related stages 199, 223
TCP/IP, using with CMS Pipelines 199, 225
TCPCLIENT stage 201
TCPDATA stage 209
TCPDEALT REXX user-written stage example 221
TCPLISTEN stage 208
terminal, working with 59
termination processing for pipelines 81
terminology changes for CMS Pipelines 267
tertiary output stream

example 116
testing stages 104
text file for a filter package, creating 227
TIME example exec for NAME option 237
time intervals, specifying with DELAY stage 157
time of day, specifying with DELAY stage 156
TITLE REXX example user-written stage 93
token, definition of 64
TOKENISE stage 269
TOKENIZE stage

synonym for TOKENISE 269
TOLABEL stage

description 22
topology of pipeline, changing 146
totaling the number of characters, words, or

records 48
totaling the number of duplicate records 51
TRACE option

PIPE command 230

306 z/VM: CMS Pipelines User’s Guide

TRACER REXX example (shows ADDPIPE) 150
traces, controlling messages generated by 236
tracing individual stages 235
tracing pipelines

with the TRACE option 229
TRACING REXX example (shows CALLPIPE) 103
tracing stages 105
tracing to a file 231
TRAILER XEDIT macro 71
trailing blanks, considerations for 20
trailing character, removing 33
TRANSLATE stage 269
translating individual characters 28
translating records 27
troubleshooting pipelines 229, 238
truncating records 32
truncation column in XEDIT 70

U
UENG REXX example (shows CALLPIPE) 100
underscore (_) indicating blanks in searches 22
understanding pipelines 8
UNIQUE operand of SORT 51
unique records, discarding 24
UNIQUE stage

description 23
unit record device 173, 180
units of work, DB2 Server for VM 197
UNPACK stage

description 189
unpacking records 189
uppercase characters, translating records to 27
URO stage

description 173, 174
user-written stage

building filter packages of 225, 228
concepts for 75
description 2, 11, 75
dispatching of 78
ECHOC REXX 203, 205, 206
ECHOD REXX 211, 217
environmental considerations for 78
executing CP and CMS commands from 92
HEXTYPE REXX 213
improving performance of 105, 225
initial register contents 77
processing arguments in 92
REXX language considerations for 75
setting return codes for 78
TCPDEALT REXX 221
testing 104
tracing 105
using 87
writing 75, 105

user-written stage, example
ADD REXX 91
ASYNCMS REXX (shows asynchronous

commands) 161
AUTHOR REXX 90, 92

user-written stage, example (continued)
BACKUP REXX (shows ADDPIPE pipeline

subcommand) 147
CHKAUTH REXX 169
CHKFILE REXX 170
COMBO REXX (shows CALLPIPE pipeline

subcommand) 102
COUNTWDS REXX (example subroutine

pipeline) 96
DEBNET REXX (shows DEBLOCK NETDATA) 188
DEC2PACK REXX (converts DB2 Server for VM

data) 197
ECHOC REXX 203, 205, 206
ECHOD REXX 211, 217
EVERY REXX (shows DELAY stage) 158
FGETMSG REXX 168
FIXED REXX (shows CALLPIPE pipeline

subcommand) 94
GENERIC REXX 166
HEXTYPE REXX 213
HOLD REXX 84
LOCDEPT REXX 144
LOGIT REXX (shows CALLPIPE pipeline

subcommand) 97
MYFANOUT REXX 142, 143
OSPDS REXX 188
PLAIN REXX (reads punch files) 179
REQUEST REXX 168
REVIT REXX 79
SECPARM REXX (shows ADDPIPE pipeline

subcommand) 148
SEELOG REXX (shows CALLPIPE pipeline

subcommand) 98, 99, 100
SQLSELEC REXX for formatting SQL queries 193
TCPDEALT REXX 221
TITLE REXX 93
TRACER REXX (shows ADDPIPE pipeline

subcommand) 150
TRACING REXX (shows CALLPIPE pipeline

subcommand) 103
UENG REXX (shows CALLPIPE pipeline

subcommand) 100
VALIDATE REXX (shows LOOKUP stage) 130

using Assembler user-written stages 87
using CALLPIPE with other pipeline subcommands 99
using concurrent SQL stages 198
using DB2 Server for VM in CMS Pipelines 193, 199
using multiple streams with the SQL stage 197
using pipelines as part of an exec 10
using REXX user-written stages 87
using several secondary streams 114
using SPECS to convert DB2 Server for VM fields 196
using subcommand environments 55
using system services 56
using unit record devices 173, 180

V
V operand

DEBLOCK stage 185

Index 307

VALIDATE REXX example (shows LOOKUP
DETAIL) 130

VAR stage
description 68

variable block spanned records 184
variable blocked records 184
variable in an exec

accessing 65
putting command results into 54

variable spanned records 185
VB operand of DEBLOCK

DEBLOCK stage 185
VBS operand of BLOCK

BLOCK stage 185
VBS operand of DEBLOCK

DEBLOCK stage 185
VERSION operand

QUERY stage 268
virtual card punch

spool file format for 176
virtual machine, service 155
virtual printer

reading data from 176
spool file format for 176
writing records to 174

virtual punch
writing records to 173

virtual reader characteristics 177
virtual storage used by pipelines 8
virtual storage, placing user-written stages into 225

W
word

changing 34
continuing 9
searching for 17, 25
writing to a pipeline 60

WORDLIST example XEDIT macro 248
WORDS operand

SPECS stage 37
WORDS operand of COUNT

COUNT stage 48
words, range of 38
WORDUSE example exec for COUNT 125
working from XEDIT 69
working with CMS commands 53
working with CP commands 53
working with the terminal 59
WRITE operand of SPECS

SPECS stage 45
writing a file 62
writing exec variables 65, 68
writing lines with SPECS WRITE operand 45
writing multiple pipelines 109
writing records to the output stream 88
writing stages 75, 105
writing to a file being edited with XEDIT 70
writing to the console 59
writing to the printer 174
writing to the virtual printer 174

writing to the virtual punch 173

X
XEDIT files, accessing 70
XEDIT macro, example

SC XEDIT macro for aligning comments 270
SCM XEDIT macro for aligning comments 270
SNIP XEDIT macro 71
STATE XEDIT (shows SUBCOM stage) 56
TRAILER XEDIT macro 71
WORDLIST XEDIT (shows XEDIT stage) 248

XEDIT messages, issuing 69
XEDIT stage

description 70
XEDIT, working from 69
XLATE stage

description 27
synonym for TRANSLATE 269
transposing underscore character 22

XMSG stage
description 69

XTRACT stage 269

Z
z/VM commands, issuing from a pipeline 53
z/VM HELP Facility, using 15

308 z/VM: CMS Pipelines User’s Guide

����

Program Number: 5741-A07

Printed in USA

SC24-6170-00

	Contents
	Figures
	Tables
	About This Document
	Intended Audience
	Where to Find More Information

	How to Send Your Comments to IBM
	If You Have a Technical Problem

	Chapter 1. Pipeline Basics
	The Significant Difference
	What Is a Pipeline?
	Stages
	The PIPE Command
	Device Drivers
	Filters
	Specifying PIPE Options
	Understanding Pipelines
	Pipelines in Execs
	Preserving a Pipeline
	Continuing Pipelines on Several Exec Lines
	Using Pipelines As Part of an Exec
	Return Codes
	User-Written Stages

	Reading Interactive Dialogs
	How to Read Syntax Diagrams
	Message and Response Notation

	Pipeline Help
	Using the Online HELP Facility
	Using the HELP Stage
	Using the AHELP Stage

	Migration Information
	Reference Book

	Chapter 2. Filters
	Selecting Records by Content
	Looking Everywhere in the Record (LOCATE, NLOCATE)
	LOCATE Stage
	NLOCATE Stage

	Looking at the Beginning of a Record (FIND, NFIND, TOLABEL, FRLABEL)
	FIND and NFIND Stages
	TOLABEL and FRLABEL Stages

	Looking at the End of a Record
	Discarding Duplicate Records (UNIQUE)
	Discarding Unique Records (UNIQUE MULTIPLE)

	Selecting Records by Position (TAKE, DROP)
	Changing Records
	Translating Characters (XLATE)
	Splitting and Joining (SPLIT, JOIN)
	SPLIT Stage
	JOIN Stage

	Padding and Chopping (PAD, CHOP)
	CHOP Stage
	PAD Stage

	Removing Leading or Trailing Characters (STRIP)
	Changing and Rearranging Contents (CHANGE, SPECS)
	CHANGE Stage
	SPECS Stage
	Advanced Uses of SPECS

	Miscellaneous Filters
	Duplicating Records (DUPLICATE)
	Counting Characters, Words, and Records (COUNT)
	Sorting Records (SORT)
	Using Column Ranges When Sorting
	Discarding Duplicates When Sorting
	Counting and Discarding Duplicates While Sorting

	Buffering Records (BUFFER)

	Chapter 3. Host Command Interfaces
	Working with CMS and CP Commands
	CMS Stage
	COMMAND Stage
	CP Stage
	Putting VM Command Results in REXX Variables
	Executing Pipeline Records as Commands

	Using Subcommand Environments (SUBCOM)
	Connecting with CP System Services
	STARMONITOR Stage

	Chapter 4. Device Drivers
	Working with the Terminal (CONSOLE)
	Writing Literal Strings to a Pipeline (LITERAL)
	Working with CMS Files
	The < Stage
	The > Stage
	The >> Stage
	The FILEFAST Stage
	Getting Facts about Files (STATE, STATEW)
	Packing and Unpacking Files

	Accessing Exec Variables
	STEM Stage
	VAR Stage

	Working from XEDIT
	Issuing XEDIT Messages (XMSG)
	Accessing XEDIT Files (XEDIT)
	Reading from XEDIT
	Writing to XEDIT

	Combining Records from Device Drivers
	APPEND Stage
	PREFACE Stage

	Chapter 5. Writing Stages
	Stage Concepts
	REXX Stages
	Assembler Stages
	Interaction with CMS Pipelines
	Pipeline Subcommands
	Pipeline Assembler Macros
	Entry Conditions to an Assembler Stage
	Return Code on Exit

	The CMS Pipelines Environment
	How a Pipeline Runs
	How a Pipeline Ends

	An Example Stage—HOLD REXX
	Writing Stages in Assembler
	Setting up the DSECT
	Using the PIPDESC Macro
	Using the PIPEPVR Macro

	An Example Assembler Stage—COPYCAT
	Using Your REXX Stage
	Using Your Assembler Stage
	Pipeline Subcommands
	READTO Subcommand
	OUTPUT Subcommand
	PEEKTO Subcommand
	SHORT Subcommand
	STAGENUM Subcommand

	Processing Arguments
	Executing CP and CMS Commands
	Another Example Stage—TITLE REXX
	Using CALLPIPE to Write Subroutine Pipelines
	Storing Sequences of Stages
	Other Formats of Connectors
	Using Connectors with CALLPIPE
	Using CALLPIPE with Other Pipeline Subcommands
	Additional CALLPIPE Examples

	Testing Stages
	Tracing Stages
	Improving Performance

	Chapter 6. Multistream Pipelines
	How Stages Use Multiple Streams
	Writing Multiple Pipelines
	Connecting Streams
	Connecting to a Secondary Output Stream
	Connecting to a Secondary Input Stream
	Connecting to Both the Secondary Input and the Secondary Output

	Using Several Secondary Streams
	Stages for Multistream Pipelines
	FANOUT Stage
	FANINANY Stage
	Identifying Streams
	Stream Numbers
	Stream Names

	FANIN Stage
	OVERLAY Stage
	SPECS, Revisited
	COUNT, Revisited
	MERGE Stage
	LOOKUP Stage

	Pipeline Stalls
	Maintaining the Relative Order of Records
	How Each Stage of a Pipeline Runs
	How Stages Delay the Records
	How to Predict Relative Record Order
	Example 1 - Not Delaying the Records
	Example 2 - Can Delay the Records
	Example 3 - Delaying the Records

	Pipeline Subcommands for Multistream Pipelines
	SELECT Pipeline Subcommand
	MAXSTREAM Pipeline Subcommand
	STREAMNUM Pipeline Subcommand
	CALLPIPE, Revisited
	ADDPIPE Pipeline Subcommand
	ADDPIPE Format
	ADDPIPE Connections

	SEVER Pipeline Subcommand

	Chapter 7. Event-Driven Pipelines
	Stages for Event-Driven Pipelines
	DELAY Stage
	IMMCMD Stage
	STARMSG Stage

	Example File Server
	Example Requester
	Example Server
	GENERIC REXX—Convert Messages to a Standard Format
	FGETMSG REXX—Filtering Out Unwanted Messages
	REQUEST REXX—Process the Request

	Running the File Server

	Chapter 8. Using Unit Record Devices
	Writing to the Virtual Punch (PUNCH, URO)
	Writing to the Printer (PRINTMC, URO)
	Reading Spool Files (READER)
	Virtual Reader Characteristics
	Reading Printer Files
	Reading Punch Files

	Chapter 9. Blocking and Deblocking
	Fixed Format
	CMS Variable Format
	MVS Variable Format
	Line-End Character Format
	NETDATA Format
	IEBCOPY Unloaded Data Set Format
	Packed Format (PACK, UNPACK)
	Creating Fixed-Format Records with FBLOCK

	Chapter 10. Using SQL in CMS Pipelines
	SQLSELEC - An Example Program to Format a Query
	Creating, Loading, and Querying a Table
	Using SPECS to Convert Fields
	About Units of Work
	Using Multiple Streams with SQL
	Using Concurrent SQL Stages
	Getting HELP for DB2 Server for VM

	Chapter 11. Using TCP/IP with CMS Pipelines
	Introduction
	Creating a Network Client
	Example of TCPCLIENT Sending Records to an ECHO Server

	Creating a Network Server
	A Simple Server

	A Way to Stop One Client/Server Conversation
	Theory of Operation

	A Server that Handles Multiple Clients
	Other TCP/IP Related Stages

	Chapter 12. Filter Packages
	Filter Package Names
	Search Order
	Building a Filter Package
	Replaced Filter Package Execs

	Chapter 13. Debugging Pipelines
	Tracing Pipelines
	Tracing to a File
	Tracing Individual Stages
	Controlling Trace Messages

	Taking Snapshots of Data
	Naming Pipelines (NAME Option)
	Displaying Pipeline Messages
	Displaying All Nonzero Return Codes (LISTERR Option)

	Appendix A. Additional Examples
	Listing Frequently-Used Execs
	Listing Accessed File Modes
	Counting Reader Files
	Displaying Block Comments
	Adding Sequence Numbers to a File
	Copying between XEDIT Files
	Reversing the Order of Records
	Isolating Words
	Listing Files on Accessed File Modes
	Ignoring Case on FIND
	Writing the First Lines of Files
	Creating a Word List from XEDIT
	Executing a Filter against XEDIT Lines
	Counting Files
	Trapping the Responses to RSCS Commands
	Processing Reader Files
	Marking Selected Lines
	Creating Two-Column Output
	Putting First Last and Last First
	Tagging and Spooling
	Create a Print File from a Reader File
	Punching Files

	Appendix B. CMS Pipelines Summary
	Appendix C. Migrating to CMS Pipelines
	Terminology Differences
	Writing Stages
	Differences in DB2 Server for VM Support
	Differences in the QUERY Stage
	Changed Filter Package Execs
	Changed Commands
	Changed Sample Programs
	Changed Messages and Return Codes
	Operating Environments Supported by z/VM CMS Pipelines

	Appendix D. ECHONET C Source Code
	Notices
	Programming Interface Information
	Trademarks

	Glossary
	Bibliography
	Where to Get z/VM Information
	z/VM Base Library
	Overview
	Installation, Migration, and Service
	Planning and Administration
	Customization and Tuning
	Operation and Use
	Application Programming
	Diagnosis

	z/VM Facilities and Features
	Data Facility Storage Management Subsystem for VM
	Directory Maintenance Facility for z/VM
	Open Systems Adapter/Support Facility
	Performance Toolkit for VM™
	RACF® Security Server for z/VM
	Remote Spooling Communications Subsystem Networking for z/VM

	Prerequisite Products
	Device Support Facilities
	Environmental Record Editing and Printing Program

	Additional Publications

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

